RD Sharma Solutions For Class 12 Chapter 17 Increasing and Decreasing Functions

1. Prove that the function $f(x) = \log_{e} x$ is increasing on $(0, \infty)$.

Solution:

Let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

 $\Rightarrow \log_{e} x_{1} < \log_{e} x_{2}$

 $\Rightarrow f(x_1) < f(x_2)$

So, f(x) is increasing in $(0, \infty)$

2. Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decreasing on $(0, \infty)$, if 0 < a < 1.

Solution:

Case I When a > 1Let $x_1, x_2 \in (0, \infty)$ We have, $x_1 < x_2$ $\Rightarrow \log_e x_1 < \log_e x_2$ \Rightarrow f (x₁) < f (x₂) So, f(x) is increasing in $(0, \infty)$ Case II When 0 < a < 1 $f(x) = \log_a x = \frac{\log x}{\log a}$ When a < 1 \Rightarrow log a < 0 Let $x_1 < x_2$ $\Rightarrow \log x_1 < \log x_2$ $\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} [\because \log a < 0]$ \Rightarrow f (x₁) > f (x₂) So, f(x) is decreasing in $(0, \infty)$ $\underset{\Rightarrow}{\xrightarrow{\log x_1}} > \frac{\log x_2}{\log a} [\because \log a < 0]$ \Rightarrow f (x₁) > f (x₂) So, f(x) is decreasing in $(0, \infty)$

3. Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R. Solution:

Given,

f(x) = ax + b, a > 0

Let $x_1, x_2 \in R$ and $x_1 > x_2$

 \Rightarrow ax₁ > ax₂ for some a > 0

 \Rightarrow ax₁ + b> ax₂ + b for some b

 \Rightarrow f (x₁) > f(x₂)

Hence, $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$

So, f(x) is increasing function of R

4. Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Solution:

Given,

f(x) = ax + b, a < 0Let $x_1, x_2 \in R$ and $x_1 > x_2$

 \Rightarrow ax₁ < ax₂ for some a > 0

 \Rightarrow ax₁ + b < ax₂ + b for some b

 \Rightarrow f (x₁) < f(x₂)

Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$

So, f(x) is decreasing function of R

Exercise 17.2 Page No: 17.33

1. Find the intervals in which the following functions are increasing or decreasing.

(i) f (x) = $10 - 6x - 2x^2$

Solution:

Given f (x) = $10 - 6x - 2x^2$

By differentiating above equation we get,

must have

$$\Rightarrow f'(x) = \frac{d}{dx}(10 - 6x - 2x^2)$$

$$\Rightarrow f'(x) = -6 - 4x$$

For f(x) to be increasing, we m

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow -6 - 4x > 0$$

$$\Rightarrow -6 - 4x > 0$$

$$\Rightarrow -4x > 6$$

$$\Rightarrow x < -\frac{6}{4}$$

$$\Rightarrow x < -\frac{3}{2}$$

$$\Rightarrow x \in (-\infty, -\frac{3}{2})$$

Thus f(x) is increasing on the interval $\left(-\infty, -\frac{3}{2}\right)$

Again, for f(x) to be increasing, we must have

f'(x) < 0 $\Rightarrow -6 - 4x < 0$ $\Rightarrow -4x < 6$ $\Rightarrow x > -\frac{6}{4}$ $\Rightarrow x > -\frac{3}{2}$ $\Rightarrow x \in (-\frac{3}{2}, \infty)$

Thus f(x) is decreasing on interval $x \in (-\frac{3}{2}, \infty)$

$$\Rightarrow X > -\frac{3}{2}$$
$$\Rightarrow X \in (-\frac{3}{2}, \infty)$$

Thus f(x) is decreasing on interval $x \in (-\frac{3}{2}, \infty)$

(ii) f (x) = $x^2 + 2x - 5$

Solution:

Given f (x) = $x^2 + 2x - 5$

Now by differentiating the given equation we get,

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 + 2x - 5)$$

$$\Rightarrow$$
 f'(x) = 2x + 2

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$
$$\Rightarrow 2x + 2 > 0$$

 $\Rightarrow x < -\frac{2}{2}$

 \Rightarrow x < -1

 \Rightarrow x \in (- ∞ ,-1)

Thus f(x) is increasing on interval $(-\infty, -1)$

Again, for f(x) to be increasing, we must have

f'(x) < 0 $\Rightarrow 2x + 2 < 0$ $\Rightarrow 2x > -2$ $\Rightarrow x > -\frac{2}{2}$ $\Rightarrow x > -\frac{2}{2}$ $\Rightarrow x > -1$ $\Rightarrow x \in (-1, \infty)$

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

(iii) $f(x) = 6 - 9x - x^2$

Solution:

Given $f(x) = 6 - 9x - x^2$ $\Rightarrow f'(x) = \frac{d}{dx}(6 - 9x - x^2)$ $\Rightarrow f'(x) = -9 - 2x$ For f(x) to be increasing, we must have $\Rightarrow f'(x) > 0$ $\Rightarrow -9 - 2x > 0$ $\Rightarrow -9 - 2x > 9$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x < -\frac{9}{2}$ $\Rightarrow x \in (-\infty, -\frac{9}{2})$ The f(x) is in the equation of the equa

Thus f(x) is increasing on interval $\left(-\infty, -\frac{9}{2}\right)$

Again, for f(x) to be decreasing, we must have

f'(x) < 0 $\Rightarrow -9 - 2x < 0$ $\Rightarrow -2x < 9$ $\Rightarrow x > -\frac{9}{2}$

$$\Rightarrow x > -\frac{9}{2}$$
$$\Rightarrow x \in (-\frac{9}{2}, \infty)$$

Thus f(x) is decreasing on interval $x \in (-\frac{9}{2}, \infty)$

(iv) $f(x) = 2x^3 - 12x^2 + 18x + 15$

Solution:

Given f (x) = $2x^3 - 12x^2 + 18x + 15$ $\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 12x^2 + 18x + 15)$ $\Rightarrow f'(x) = 6x^2 - 24x + 18$ For f(x) we have to find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 6x^2 - 24x + 18 = 0$ $\Rightarrow 6(x^2 - 4x + 3) = 0$ $\Rightarrow 6(x^2 - 3x - x + 3) = 0$ $\Rightarrow 6(x - 3)(x - 1) = 0$ $\Rightarrow (x - 3)(x - 1) = 0$ $\Rightarrow x = 3, 1$

Clearly, f'(x) > 0 if x < 1 and x > 3 and f'(x) < 0 if 1 < x < 3

Thus, f(x) increases on $(-\infty, 1) \cup (3, \infty)$ and f(x) is decreasing on interval $x \in (1, 3)$

(v) $f(x) = 5 + 36x + 3x^2 - 2x^3$ Solution: Given $f(x) = 5 + 36x + 3x^2 - 2x^3$ \Rightarrow $f(x) = \frac{d}{dx}(5 + 36x + 3x^2 - 2x^3)$ $\Rightarrow f'(x) = 36 + 6x - 6x^2$ For f(x) now we have to find critical point, we must have

Now differentiating with respect to x

$$\Rightarrow \mathbf{f}(\mathbf{x}) = \frac{\mathbf{d}}{\mathbf{dx}}(\mathbf{8} + \mathbf{36x} + \mathbf{3x}^2 - \mathbf{2x}^3)$$

$$\Rightarrow \mathbf{f}(\mathbf{x}) = \mathbf{36} + \mathbf{6x} - \mathbf{6x}^2$$

For f(x) we have to find critical point, we must have

$$\Rightarrow \mathbf{f}(\mathbf{x}) = \mathbf{0}$$

$$\Rightarrow \mathbf{36} + \mathbf{6x} - \mathbf{6x}^2 = \mathbf{0}$$

$$\Rightarrow \mathbf{6}(-\mathbf{x}^2 + \mathbf{x} + \mathbf{6}) = \mathbf{0}$$

$$\Rightarrow \mathbf{6}(-\mathbf{x}^2 + \mathbf{3x} - 2\mathbf{x} + \mathbf{6}) = \mathbf{0}$$

$$\Rightarrow -\mathbf{x}^2 + \mathbf{3x} - 2\mathbf{x} + \mathbf{6} = \mathbf{0}$$

$$\Rightarrow \mathbf{x}^2 - \mathbf{3x} + 2\mathbf{x} - \mathbf{6} = \mathbf{0}$$

$$\Rightarrow \mathbf{x}^2 - \mathbf{3x} + 2\mathbf{x} - \mathbf{6} = \mathbf{0}$$

$$\Rightarrow \mathbf{x} = \mathbf{3}, -2$$

Clearly, f(x) > 0 if -2 < x < 3 and f(x) < 0 if x < -2 and x > 3
Thus, f(x) increases on x $\in (-2, 3)$ and f(x) is decreasing on interval $(-\infty, 2) \cup (3, \infty)$
(vii) f(x) = $5x^3 - 15x^2 - 120x + 3$
Solution:

Given $f(x) = 5x^3 - 15x^2 - 120x + 3$

Now by differentiating above equation with respect x, we get

$$\vec{f}(\mathbf{x}) = \frac{d}{dx}(\mathbf{5x^3} - \mathbf{15x^2} - \mathbf{120x} + \mathbf{3})$$

$$\Rightarrow f(\mathbf{x}) = 15x^2 - 30x - 120$$
For f(x) we have to find critical point, we must have
$$\Rightarrow f(\mathbf{x}) = 0$$

$$\Rightarrow 15x^2 - 30x - 120 = 0$$

$$\Rightarrow 15(x^2 - 2x - 8) = 0$$

$$\Rightarrow 15(x^2 - 2x - 8) = 0$$

$$\Rightarrow 15(x^2 - 4x + 2x - 8) = 0$$

$$\Rightarrow x^2 - 4x + 2x - 8 = 0$$

$$\Rightarrow (x - 4) (x + 2) = 0$$

$$\Rightarrow x = 4, -2$$
Clearly, f(x) > 0 if x < -2 and x > 4 and f(x) < 0 if -2 < x < 4
Thus, f(x) increases on (-∞, -2) ∪ (4, ∞) and f(x) is decreasing on interval x ∈ (-2, 4)
(viii) f(x) = x^2 - 6x^2 - 36x + 2

$$\Rightarrow$$
f(x) = $\frac{d}{dx}(x^3 - 6x^2 - 36x + 2)$

$$\Rightarrow f(x) = 3x^2 - 12x - 36$$
For f(x) we have to find critical point, we must have

$$\Rightarrow f(x) = 0$$

$$\Rightarrow 3x^2 - 12x - 36 = 0$$

$$\Rightarrow 3(x^2 - 4x - 12) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x + 2x - 12 = 0$$

$$\Rightarrow (x - 6) (x + 2) = 0$$

$$\Rightarrow x - 6x - 2$$

$$Clearly, f(x) > 0 \text{ if } x < -2 \text{ and } x < 6 \text{ and } f(x) < 0 \text{ if } -2 < x < 6$$
Thus, f(x) increases on $(-∞, -2) \cup (6, ∞)$ and f(x) is decreasing on interval $x \in (-2, 6)$

$$(x) f(x) = 2x^2 - 15x^2 + 36x + 1$$
Solution:
Given f(x) = 2x^2 - 15x^2 + 36x + 1

Now by differentiating above equation with respect x, we get

$$\vec{f}(\mathbf{x}) = \frac{d}{d\mathbf{x}} (2\mathbf{x}^3 - 15\mathbf{x}^2 + 36\mathbf{x} + 1)$$

$$\Rightarrow f'(\mathbf{x}) = 6\mathbf{x}^2 - 30\mathbf{x} + 36$$
For f(x) we have to find critical point, we must have
$$\Rightarrow f'(\mathbf{x}) = 0$$

$$\Rightarrow 6\mathbf{x}^2 - 30\mathbf{x} + 36 = 0$$

$$\Rightarrow 6(\mathbf{x}^2 - 5\mathbf{x} + 6) = 0$$

$$\Rightarrow 6(\mathbf{x}^2 - 3\mathbf{x} - 2\mathbf{x} + 6) = 0$$

$$\Rightarrow \mathbf{x}^2 - 3\mathbf{x} - 2\mathbf{x} + 6 = 0$$

$$\Rightarrow (\mathbf{x} - 3) (\mathbf{x} - 2) = 0$$

$$\Rightarrow \mathbf{x} = 3, 2$$
Clearly, f(x) > 0 if x < 2 and x > 3 and f(x) < 0 if 2 < x < 3
Thus, f(x) increases on (-∞, 2) ∪ (3, ∞) and f(x) is decreasing on interval x ∈ (2, 3)

(x) f (x) = $2x^3 + 9x^2 + 12x + 20$

Solution:

Given $f(x) = 2x^3 + 9x^2 + 12x + 20$

Differentiating above equation we get

$$\stackrel{\Rightarrow}{f(x)} = \frac{d}{dx}(2x^3 + 9x^2 + 12x + 20)$$

 $\Rightarrow f'(x) = 6x^2 + 18x + 12$

For f(x) we have to find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

- $\Rightarrow 6x^2 + 18x + 12 = 0$
- $\Rightarrow 6(x^2 + 3x + 2) = 0$
- $\Rightarrow 6(x^2 + 2x + x + 2) = 0$
- $\Rightarrow x^2 + 2x + x + 2 = 0$
- $\Rightarrow (x + 2) (x + 1) = 0$
- \Rightarrow x = -1, -2

Clearly, f'(x) > 0 if -2 < x < -1 and f'(x) < 0 if x < -1 and x > -2

Thus, f(x) increases on $x \in (-2, -1)$ and f(x) is decreasing on interval $(-\infty, -2) \cup (-2, \infty)$

2. Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the line y = x + 5.

Solution:

Given $f(x) = x^2 - 6x + 9$ \Rightarrow $f(x) = \frac{d}{dx}(x^2 - 6x + 9)$ $\Rightarrow f'(x) = 2x - 6$ $\Rightarrow f'(x) = 2(x - 3)$ For f(x) let us find critical point, we must have $\Rightarrow f'(x) = 0$ $\Rightarrow 2(x - 3) = 0$ $\Rightarrow (x - 3) = 0$ $\Rightarrow x = 3$ Clearly, f'(x) > 0 if x > 3 and f'(x) < 0 if x < 3Thus, f(x) increases on $(3, \infty)$ and f(x) is decreasing on interval $x \in (-\infty, 3)$ Now, let us find coordinates of point Equation of curve is $f(x) = x^2 - 6x + 9$ Slope of this curve is given by

$$\Rightarrow m_{1} = \frac{dy}{dx}$$

$$\Rightarrow m_{1} = \frac{d}{dx}(x^{2} - 6x + 9)$$

$$\Rightarrow m_{1} = 2x - 6$$
Equation of line is $y = x + 5$
Slope of this curve is given by
$$\Rightarrow m_{2} = \frac{dy}{dx}$$

$$\Rightarrow m_{2} = \frac{d}{dx}(x + 5)$$

$$\Rightarrow$$
 m₂ = 1

Since slope of curve is parallel to line

Therefore, they follow the relation

$$\Rightarrow \frac{-1}{m_1} = m_2$$
$$\Rightarrow \frac{-1}{2x-6} = 1$$
$$\Rightarrow 2x - 6 = -1$$
$$\Rightarrow x = \frac{5}{2}$$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow$$
 y = x² - 6x + 9

$$\Rightarrow 2x - 6 = -1$$
$$\Rightarrow x = \frac{5}{2}$$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow y = x^{2} - 6x + 9$$

$$\Rightarrow y = \left(\frac{5}{2}\right)^{2} - 6\left(\frac{5}{2}\right) + 9$$

$$\Rightarrow y = \frac{25}{4} - 15 + 9$$

$$\Rightarrow y = \frac{25}{4} - 6$$

$$\Rightarrow y = \frac{1}{4}$$

Thus the required coordinates is $(\frac{5}{2}, \frac{1}{4})$

3. Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing. Solution:

Given f (x) = sin x - cos x

$$\Rightarrow f'(x) = \frac{d}{dx}(sin x - cos x)$$

$$\Rightarrow f'(x) = cos x + sin x$$
For f(x) let us find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow Cos x + sin x = 0$$

$$\Rightarrow Tan (x) = -1$$

$$\Rightarrow x = \frac{3\pi}{4}, \frac{7\pi}{4}$$

Here these points divide the angle range from 0 to 2π since we have x as angle

Clearly, f'(x) > 0 if $0 < x < \frac{3\pi}{4}$ and $\frac{7\pi}{4} < x < 2\pi$ and f'(x) < 0 if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$ Thus, f(x) increases on $(0, \frac{3\pi}{4}) \cup (\frac{7\pi}{4}, 2\pi)$ and f(x) is decreasing on interval $(\frac{3\pi}{4}, \frac{7\pi}{4})$

Clearly, f'(x) > 0 if $0 < x < \frac{3\pi}{4}$ and $\frac{7\pi}{4} < x < 2\pi$ and f'(x) < 0 if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$ Thus, f(x) increases on $(0, \frac{3\pi}{4}) \cup (\frac{7\pi}{4}, 2\pi)$ and f(x) is decreasing on interval $(\frac{3\pi}{4}, \frac{7\pi}{4})$

4. Show that $f(x) = e^{2x}$ is increasing on R.

Solution:

Given $f(x) = e^{2x}$

 $\Rightarrow f'(x) = \frac{d}{dx}(e^{2x})$ $\Rightarrow f'(x) = 2e^{2x}$ For f(x) to be increasing, we must have $\Rightarrow f'(x) > 0$ $\Rightarrow 2e^{2x} > 0$ $\Rightarrow e^{2x} > 0$

Since, the value of e lies between 2 and 3

So, whatever be the power of e (that is x in domain R) will be greater than zero.

Thus f(x) is increasing on interval R

5. Show that f (x) = e^{ix} , x $\neq 0$ is a decreasing function for all x $\neq 0$.

Solution:

Given
$$f(x) = e^{\frac{1}{x}}$$

 $\Rightarrow f'(x) = \frac{d}{dx} \left(e^{\frac{1}{x}} \right)$
 $\Rightarrow f'(x) = e^{\frac{1}{x}} \left(\frac{-1}{x^2} \right)$
 $\Rightarrow f'(x) = -\frac{e^{\frac{1}{x}}}{x^2}$

As given $x \in R$, $x \neq 0$

$$\Rightarrow \frac{1}{x^2} > 0$$
 and $e^{\frac{1}{x}} > 0$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{x^2} > 0$$

Their ratio is also greater than 0

$$\Rightarrow \frac{\frac{e^{\frac{1}{x}}}{x^2}}{x^2} > 0$$

 $\Rightarrow -\frac{e\bar{x}}{x^2} < 0$; as by applying negative sign change in comparison sign $\Rightarrow f'(x) < 0$

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all $x \neq 0$

6. Show that $f(x) = \log_a x$, 0 < a < 1 is a decreasing function for all x > 0.

Solution:

Given f (x) = $\log_a x$, 0 < a < 1

$$\Rightarrow f'(x) = \frac{d}{dx}(\log_a x)$$
$$\Rightarrow f'(x) = \frac{1}{x\log_a}$$

As given 0 < a < 1

 \Rightarrow log (a) < 0 and for x > 0

$$\Rightarrow \frac{1}{x} > 0$$

Therefore f'(x) is

$$\Rightarrow \frac{1}{x \log a} < 0$$

 \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all x > 0

7. Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Solution:

Given $f(x) = \sin x$

$$\Rightarrow f'(x) = \frac{d}{dx}(\sin x)$$

$$\Rightarrow f'(x) = \cos x$$

Taking different region from 0 to 2π
Let $x \in (0, \frac{\pi}{2})$

$$\Rightarrow \cos(x) > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$
Let $x \in (\frac{\pi}{2}, \pi)$

$$\Rightarrow \cos(x) < 0$$

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Therefore, from above condition we find that

 \Rightarrow f (x) is increasing in $(0, \frac{\pi}{2})$ and decreasing in $(\frac{\pi}{2}, \pi)$

Hence, condition for f(x) neither increasing nor decreasing in $(0, \pi)$

8. Show that $f(x) = \log \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$. Solution:

Given
$$f(x) = \log \sin x$$

$$\Rightarrow f'(x) = \frac{d}{dx} (\log \sin x)$$

$$\Rightarrow f'(x) = \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow f'(x) = \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow f'(x) = \cot(x)$$

Taking different region from 0 to
Let $x \in (0, \frac{\pi}{2})$

$$\Rightarrow \cot(x) > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$
Let $x \in (\frac{\pi}{2}, \pi)$

$$\Rightarrow \cot(x) < 0$$

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(\frac{1}{2}, \pi)$

Hence proved

9. Show that $f(x) = x - \sin x$ is increasing for all $x \in R$.

Solution:

Given $f(x) = x - \sin x$

$$f'(x) = \frac{d}{dx}(x - \sin x)$$

 \Rightarrow f'(x) = 1 - cos x

Now, as given x c R

$$\Rightarrow -1 < \cos x < 1$$

$$\Rightarrow -1 > \cos x > 0$$

$$\Rightarrow$$
 f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

10. Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is an increasing function for all $x \in R$.

π

Solution:

Given $f(x) = x^3 - 15x^2 + 75x - 50$ \Rightarrow $f'(x) = \frac{d}{dx}(x^3 - 15x^2 + 75x - 50)$ $\Rightarrow f'(x) = 3x^2 - 30x + 75$ $\Rightarrow f'(x) = 3(x^2 - 10x + 25)$ $\Rightarrow f'(x) = 3(x - 5)^2$ Now, as given $x \in \mathbb{R}$ $\Rightarrow (x - 5)^2 > 0$ $\Rightarrow 3(x - 5)^2 > 0$ $\Rightarrow f'(x) > 0$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

11. Show that $f(x) = \cos^2 x$ is a decreasing function on (0, $\pi/2$).

Solution:

Given $f(x) = \cos^2 x$

⇒

$$f'(x) = \frac{d}{dx}(\cos^2 x)$$

 \Rightarrow f'(x) = 2 cos x (-sin x)

$$\Rightarrow$$
 f'(x) = -2 sin (x) cos (x)

$$\Rightarrow$$
 f'(x) = -sin2x

Now, as given x belongs to $(0, \pi/2)$.

$$\Rightarrow 2x \in (0)$$

π)

 \Rightarrow Sin (2x)> 0

 \Rightarrow –Sin (2x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $(0, \pi/2)$.

Hence proved

12. Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given $f(x) = \sin x$

$$\stackrel{\Rightarrow}{f(x)} = \frac{d}{dx}(\sin x)$$

 \Rightarrow f'(x) = cos x

Now, as given $x \in (-\pi/2, \pi/2)$.

That is 4th quadrant, where

 \Rightarrow Cos x> 0

 \Rightarrow f'(x) > 0

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval ($-\pi/2$, $\pi/2$).

13. Show that $f(x) = \cos x$ is a decreasing function on (0, π), increasing in ($-\pi$, 0) and neither increasing nor decreasing in ($-\pi$, π).

Solution:

Given
$$f(x) = \cos x$$

$$f'(x) = \frac{d}{dx}(\cos x)$$

 \Rightarrow f'(x) = -sin x

Taking different region from 0 to 2π

Let $x \in (0, \pi)$.

```
\Rightarrow Sin(x) > 0
```

 $\Rightarrow -\sin x < 0$

$$\Rightarrow$$
 f'(x) < 0

Thus f(x) is decreasing in $(0, \pi)$

Let $x \in (-\pi, o)$.

 \Rightarrow Sin (x) < 0

 $\Rightarrow -\sin x > 0$

 \Rightarrow f'(x) > 0

Thus f(x) is increasing in $(-\pi, 0)$.

Therefore, from above condition we find that

 \Rightarrow f (x) is decreasing in (0, π) and increasing in (– π , 0).

Hence, condition for f(x) neither increasing nor decreasing in (– π , π)

14. Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Solution:

Given f (x) = tan x

$$\stackrel{\Rightarrow}{f(x)} = \frac{d}{dx}(\tan x)$$

 \Rightarrow f'(x) = sec²x

Now, as given $x \in (-\pi/2, \pi/2)$. That is 4th quadrant, where $\Rightarrow \sec^2 x > 0$ $\Rightarrow f'(x) > 0$ Hence, Condition for f(x) to be increasing Thus f(x) is increasing on interval ($-\pi/2, \pi/2$).

15. Show that $f(x) = \tan^{-1} (\sin x + \cos x)$ is a decreasing function on the interval ($\pi/4$, $\pi/2$). Solution:

Given
$$f(x) = \tan^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx} (\tan^{-1} (\sin x + \cos x))$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

 \Rightarrow f'(x) < 0

Hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

16. Show that the function f (x) = sin (2x + $\pi/4$) is decreasing on (3 $\pi/8$, 5 $\pi/8$). Solution:

Given, $f(x) = \sin(2x + \frac{\pi}{4})$ \Rightarrow $f'(x) = \frac{d}{dx} \{ \sin(2x + \frac{\pi}{4}) \}$ \Rightarrow f'(x) = cos $\left(2x + \frac{\pi}{4}\right) \times 2$ \Rightarrow f(x) = 2cos $\left(2x + \frac{\pi}{4}\right)$ Now, as given $x \in \left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$ $\Rightarrow \frac{3\pi}{8} < X < \frac{5\pi}{8}$ $\Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}$ $\Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2}$ As here $2x + \frac{\pi}{4}$ lies in 3rd quadrant $\Rightarrow \cos\left(2x + \frac{\pi}{4}\right) < 0$ $\Rightarrow 2\cos\left(2x+\frac{\pi}{4}\right) < 0$ \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f (x) is decreasing on the interval $(3\pi/8, 5\pi/8)$.

17. Show that the function $f(x) = \cot^{-1} (\sin x + \cos x)$ is decreasing on $(0, \pi/4)$ and increasing on $(\pi/4, \pi/2)$.

Solution:

Given $f(x) = \cot^{-1} (\sin x + \cos x)$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \cot^{-1}(\sin x + \cos x) \}$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given $x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

 \Rightarrow Cos x – sin x < 0; as here cosine values are smaller than sine values for same angle

 $\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$

 \Rightarrow f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Show that $f(x) = (x - 1) e^{x} + 1$ is an increasing function for all x > 0.

Solution:

Given $f(x) = (x - 1) e^{x} + 1$

Now differentiating the given equation with respect to x, we get

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}((x-1)e^{x}+1)$$

$$\Rightarrow f'(x) = e^{x} + (x-1)e^{x}$$

$$\Rightarrow f'(x) = e^{x}(1+x-1)$$

$$\Rightarrow f'(x) = x e^{x}$$

As given x > 0

$$\Rightarrow e^{x} > 0$$

$$\Rightarrow x e^{x} > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x > 0

19. Show that the function $x^2 - x + 1$ is neither increasing nor decreasing on (0, 1).

Solution:

Given $f(x) = x^2 - x + 1$

Now by differentiating the given equation with respect to x, we get

$$\Rightarrow$$

$$f'(x) = \frac{d}{dx}(x^{2} - x + 1)$$

$$\Rightarrow f'(x) = 2x - 1$$
Taking different region from (0, 1)
Let $x \in (0, \frac{1}{2})$

$$\Rightarrow 2x - 1 < 0$$

$$\Rightarrow f'(x) < 0$$
Thus $f(x)$ is decreasing in $(0, \frac{1}{2})$
Let $x \in (\frac{1}{2}, 1)$

$$\Rightarrow 2x - 1 > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(\frac{1}{2}, 1)$

Therefore, from above condition we find that

 \Rightarrow f (x) is decreasing in (0, ½) and increasing in (½, 1)

Hence, condition for f(x) neither increasing nor decreasing in (0, 1)

20. Show that $f(x) = x^{9} + 4x^{7} + 11$ is an increasing function for all $x \in \mathbb{R}$.

Solution:

Given f (x) = $x^9 + 4x^7 + 11$

Now by differentiating above equation with respect to x, we get

$$\Rightarrow f'(x) = \frac{d}{dx}(x^9 + 4x^7 + 11)$$
$$\Rightarrow f'(x) = 9x^6 + 28x^6$$
$$\Rightarrow f'(x) = x^6(9x^2 + 28)$$
As given x $\in \mathbb{R}$
$$\Rightarrow x^6 > 0 \text{ and } 9x^2 + 28 > 0$$
$$\Rightarrow x^6 (9x^2 + 28) > 0$$

 \Rightarrow f'(x) > 0

Hence, condition for f(x) to be increasing Thus f(x) is increasing on interval $x \in R$