NCERT Class 8 Maths Chapter 1 Rational Numbers

1. Using appropriate properties find.

(i)
$$-2/3 \times 3/5 + 5/2 - 3/5 \times 1/6$$

Solution:

$$-2/3 \times 3/5 + 5/2 - 3/5 \times 1/6$$

$$= -2/3 \times 3/5 - 3/5 \times 1/6 + 5/2$$
 (by commutativity)

$$= 3/5 (-2/3 - 1/6) + 5/2$$

$$= 3/5 ((-4 - 1)/6) + 5/2$$

$$= 3/5 ((-5)/6) + 5/2$$
 (by distributivity)

$$= -15/30 + 5/2$$

$$= -1/2 + 5/2$$

= 2

(ii)
$$2/5 \times (-3/7) - 1/6 \times 3/2 + 1/14 \times 2/5$$

Solution:

$$2/5 \times (-3/7) - 1/6 \times 3/2 + 1/14 \times 2/5$$

=
$$2/5 \times (-3/7) + 1/14 \times 2/5 - (1/6 \times 3/2)$$
 (by commutativity)

$$= 2/5 \times (-3/7 + 1/14) - 3/12$$

$$= 2/5 \times ((-6 + 1)/14) - 3/12$$

$$= 2/5 \times ((-5)/14)) - 1/4$$

$$= (-10/70) - 1/4$$

$$= -1/7 - 1/4$$

$$=(-4-7)/28$$

$$= -11/28$$

2. Write the additive inverse of each of the following

Solution:

(i) 2/8

Additive inverse of 2/8 is -2/8

(ii) -5/9

Additive inverse of -5/9 is 5/9

(iii)
$$-6/-5 = 6/5$$

Additive inverse of 6/5 is -6/5

(iv)
$$2/-9 = -2/9$$

Additive inverse of -2/9 is 2/9

$$(v) 19/-16 = -19/16$$

Additive inverse of -19/16 is 19/16

3. Verify that: -(-x) = x for.

(i)
$$x = 11/15$$

(ii)
$$x = -13/17$$

Solution:

(i)
$$x = 11/15$$

We have, x = 11/15

The additive inverse of x is -x (as x + (-x) = 0)

Then, the additive inverse of 11/15 is -11/15 (as 11/15 + (-11/15) = 0)

The same equality 11/15 + (-11/15) = 0, shows that the additive inverse of -11/15 is 11/15.

$$Or, -(-11/15) = 11/15$$

i.e.,
$$-(-x) = x$$

We have, x = -13/17

The additive inverse of x is -x (as x + (-x) = 0)

Then, the additive inverse of -13/17 is 13/17 (as 11/15 + (-11/15) = 0)

The same equality (-13/17 + 13/17) = 0, shows that the additive inverse of 13/17 is -13/17.

$$Or, -(13/17) = -13/17,$$

i.e.,
$$-(-x) = x$$

4. Find the multiplicative inverse of the

Solution:

Multiplicative inverse of -13 is -1/13

Multiplicative inverse of -13/19 is -19/13

Multiplicative inverse of 1/5 is 5

(iv)
$$-5/8 \times (-3/7) = 15/56$$

Multiplicative inverse of 15/56 is 56/15

$$(v) -1 \times (-2/5) = 2/5$$

Multiplicative inverse of 2/5 is 5/2

(vi) -1

Multiplicative inverse of -1 is -1

5. Name the property under multiplication used in each of the following.

(i)
$$-4/5 \times 1 = 1 \times (-4/5) = -4/5$$

(ii)
$$-13/17 \times (-2/7) = -2/7 \times (-13/17)$$

(iii)
$$-19/29 \times 29/-19 = 1$$

Solution:

(i)
$$-4/5 \times 1 = 1 \times (-4/5) = -4/5$$

Here 1 is the multiplicative identity.

(ii)
$$-13/17 \times (-2/7) = -2/7 \times (-13/17)$$

The property of commutativity is used in the equation

(iii)
$$-19/29 \times 29/-19 = 1$$

Multiplicative inverse is the property used in this equation.

6. Multiply 6/13 by the reciprocal of -7/16

Solution:

Reciprocal of -7/16 = 16/-7 = -16/7

According to the question,

 $6/13 \times (Reciprocal of -7/16)$

$$6/13 \times (-16/7) = -96/91$$

7. Tell what property allows you to compute $1/3 \times (6 \times 4/3)$ as $(1/3 \times 6) \times 4/3$

Solution:

$$1/3 \times (6 \times 4/3) = (1/3 \times 6) \times 4/3$$

Here, the way in which factors are grouped in a multiplication problem, supposedly, does not change the product. Hence, the Associativity Property is used here.

8. Is 8/9 the multiplication inverse of

$$-1\frac{1}{8}$$
 ? Why or why not?

Solution:

$$1\frac{1}{8} = -7/8$$

[Multiplicative inverse \Rightarrow product should be 1]

According to the question,

$$8/9 \times (-7/8) = -7/9 \neq 1$$

Therefore, 8/9 is not the multiplicative inverse of $1\frac{1}{8}$.

9. If 0.3 the multiplicative inverse of

$3\frac{1}{3}$? Why or why not?

Solution:

$$3\frac{1}{3} = 10/3$$

$$0.3 = 3/10$$

[Multiplicative inverse ⇒ product should be 1] According to the question,

$$3/10 \times 10/3 = 1$$

Therefore, 0.3 is the multiplicative inverse of $3\frac{1}{3}$

10. Write

- (i) The rational number that does not have a reciprocal.
- (ii) The rational numbers that are equal to their reciprocals.
- (iii) The rational number that is equal to its negative.

Solution:

(i)The rational number that does not have a reciprocal is 0. Reason:

$$0 = 0/1$$

Reciprocal of 0 = 1/0, which is not defined.

(ii) The rational numbers that are equal to their reciprocals are 1 and -1.

Reason:

$$1 = 1/1$$

Reciprocal of 1 = 1/1 = 1 Similarly, Reciprocal of -1 = -1

(iii) The rational number that is equal to its negative is 0.

Reason:

Negative of 0=-0=0

- 11. Fill in the blanks.
- (i) Zero has reciprocal.
- (ii) The numbers and are their own reciprocals
- (iii) The reciprocal of 5 is .

- (iv) Reciprocal of 1/x, where $x \neq 0$ is .
- (v) The product of two rational numbers is always a .
- (vi) The reciprocal of a positive rational number is .

Solution:

- (i) Zero has no reciprocal.
- (ii) The numbers -1 and 1 are their own reciprocals
- (iii) The reciprocal of -5 is -1/5.
- (iv) Reciprocal of 1/x, where $x \neq 0$ is x.
- (v) The product of two rational numbers is always a rational number.
- (vi) The reciprocal of a positive rational number is positive.

Exercise 1.2

- 1. Represent these numbers on the number line.
- (i) 7/4
- (ii) -5/6

Solution:

(i) 7/4

Divide the line between the whole numbers into 4 parts. i.e., divide the line between 0 and 1 to 4 parts, 1 and 2 to 4 parts and so on.

Thus, the rational number 7/4 lies at a distance of 7 points away from 0 towards positive number line.

(ii) -5/6

Divide the line between the integers into 4 parts. i.e., divide the line between 0 and -1 to 6 parts, -1 and -2 to 6 parts and so on. Here since the numerator is less than denominator, dividing 0 to -1 into 6 part is sufficient.

Thus, the rational number -5/6 lies at a distance of 5 points, away from 0, towards negative number line

2. Represent -2/11, -5/11, -9/11 on a number line.

Solution:

Divide the line between the integers into 11 parts.

Thus, the rational numbers -2/11, -5/11, -9/11 lies at a distance of 2, 5, 9 points away from 0, towards negative number line respectively.

3. Write five rational numbers which are smaller than 2.

Solution:

The number 2 can be written as 20/10

Hence, we can say that, the five rational numbers which are smaller than 2 are:

2/10, 5/10, 10/10, 15/10, 19/10

4. Find the rational numbers between -2/5 and $\frac{1}{2}$.

Solution:

Let us make the denominators same, say 50.

$$-2/5 = (-2 \times 10)/(5 \times 10) = -20/50$$

$$\frac{1}{2} = \frac{1 \times 25}{2 \times 25} = \frac{25}{50}$$

Ten rational numbers between -2/5 and $\frac{1}{2}$ = ten rational numbers between -20/50 and 25/50

Therefore, ten rational numbers between -20/50 and 25/50 = -18/50, -15/50, -5/50, -2/50, 4/50, 5/50, 8/50, 12/50, 15/50, 20/50

5. Find five rational numbers between.

- (i) 2/3 and 4/5
- (ii) -3/2 and 5/3
- (iii) 1/4 and 1/2

Solution:

(i) 2/3 and 4/5

Let us make the denominators same, say 60

i.e., 2/3 and 4/5 can be written as:

$$2/3 = (2 \times 20)/(3 \times 20) = 40/60$$

$$4/5 = (4 \times 12)/(5 \times 12) = 48/60$$

Five rational numbers between 2/3 and 4/5 = five rational numbers between 40/60 and 48/60 Therefore, Five rational numbers between 40/60 and 48/60 = 41/60, 42/60, 43/60, 44/60, 45/60 (ii) -3/2 and 5/3

Let us make the denominators same, say 6

i.e., -3/2 and 5/3 can be written as:

$$-3/2 = (-3 \times 3)/(2 \times 3) = -9/6$$

$$5/3 = (5 \times 2)/(3 \times 2) = 10/6$$

Five rational numbers between -3/2 and 5/3 = five rational numbers between -9/6 and 10/6

Therefore, Five rational numbers between -9/6 and 10/6 = -1/6, 2/6, 3/6, 4/6, 5/6

Let us make the denominators same, say 24.

i.e., 1/4 and 1/2 can be written as:

$$\frac{1}{4} = (1 \times 6)/(4 \times 6) = 6/24$$

$$\frac{1}{2} = \frac{1 \times 12}{2 \times 12} = \frac{12}{24}$$

Five rational numbers between $\frac{1}{4}$ and $\frac{1}{2}$ = five rational numbers between $\frac{6}{24}$ and $\frac{12}{24}$

Therefore, Five rational numbers between 6/24 and 12/24 = 7/24, 8/24, 9/24, 10/24, 11/24

6. Write five rational numbers greater than -2.

Solution:

-2 can be written as - 20/10

Hence, we can say that, the five rational numbers greater than -2 are

7. Find ten rational numbers between 3/5 and 3/4,

Solution:

Let us make the denominators same, say 80.

$$3/5 = (3 \times 16)/(5 \times 16) = 48/80$$

$$3/4 = (3 \times 20)/(4 \times 20) = 60/80$$

Ten rational numbers between 3/5 and 3/4 = ten rational numbers between 48/80 and 60/80

Therefore, ten rational numbers between 48/80 and 60/80 = 49/80, 50/80, 51/80, 52/80, 54/80, 55/80, 56/80, 57/80, 58/80, 59/80