Test Date: 05/08/2020

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Mock Test

for JEE (Advanced) - 2020

Test - 4A (Paper - I)

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS	
1.	(B, C)	19.	(A, C, D)	37.	(A, D)
2.	(C, D)	20.	(A, B, C)	38.	(A, C, D)
3.	(A, B, C, D)	21.	(A, B, C, D)	39.	(A, B)
4.	(B, C)	22.	(A, B, C)	40.	(B, D)
5.	(A, B, C)	23.	(A, D)	41.	(A, B)
6.	(B, D)	24.	(A, B, C, D)	42.	(A, C, D)
7.	(60)	25.	(04)	43.	(06)
8.	(20)	26.	(04)	44.	(06)
9.	(22)	27.	(64)	45.	(02)
10.	(15)	28.	(12)	46.	(00)
11.	(20)	29.	(13)	47.	(07)
12.	(15)	30.	(25)	48.	(38)
13.	(14)	31.	(64)	49.	(03)
14.	(08)	32.	(35)	50.	(03)
15.	(B)	33.	(D)	51.	(C)
16.	(D)	34.	(B)	52.	(C)
17.	(A)	35.	(A)	53.	(C)
18.	(B)	36.	(B)	54.	(C)

Test Date: 05/08/2020

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Mock Test

for JEE (Advanced) - 2020

Test - 4A (Paper - I)

ANSWERS & SOLUTIONS

3.

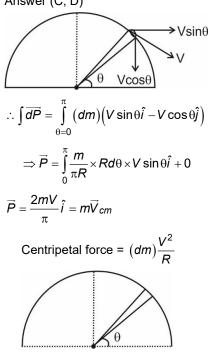
4.

PART – I : PHYSICS

Answer (B, C)

$$dU = Q - \frac{Q}{2} = \frac{Q}{2} = dW$$

$$\Rightarrow n\left(\frac{3R}{2}\right)dT = PdV$$


$$\Rightarrow \frac{3}{2}(PdV + VdP) = PdV$$

$$\Rightarrow PV^{\frac{1}{3}} = \text{const} \Rightarrow P\sqrt{T} = \text{constant}$$

$$\therefore C = \frac{3R}{2} - \frac{R}{\frac{1}{3} - 1} = 3R$$

2. Answer (C, D)

1.

$$\therefore F_{y} = \frac{m}{\pi R} (Rd\theta) \times \frac{V^{2}}{R} \sin \theta$$

$$= \frac{mV^{2}}{\pi R} \times \int_{0}^{\pi} \sin \theta d\theta$$

$$= \frac{2mV^{2}}{\pi R}$$
Answer (A, B, C, D)
$$Q_{B}(t=0) = 4\pi \in_{0} (3a) \times V = 12\pi \in_{0} aV$$

$$Q_{A}(t \to \infty) = \frac{4\pi \in_{0} a}{4\pi \in_{0} a + 12\pi \in_{0} a} \times (12\pi \in_{0} aV) = 3\pi \in_{0} aV$$

$$\Delta H = \frac{1}{2} \times \left(\frac{3}{4} \times 4\pi \in_{0} a\right) \times V^{2} = \frac{3\pi \in_{0} aV^{2}}{2}$$

$$\left(\because \Delta H = \frac{1}{2} \frac{C_{1}C_{2}}{C_{1} + C^{2}} \times V^{2} \right)$$

$$\sigma_B = \frac{\alpha_B}{4\pi (3a)^2} = \frac{3\pi c_0 a^2}{4\pi 9a^2} = \frac{c_0 v}{4a}$$
Answer (B, C)

$$\frac{I_{max}}{I_{min}} = \frac{(A_1 + A_2)^2}{(A_1 - A_2)^2} = \left(\frac{9 + 7}{9 - 7}\right)^2 = 64 \quad \text{and} \\ v_1 = \frac{440}{2\pi} = 70 \text{ Hz} \\ v_2 = \frac{484}{2\pi} = 77 \text{ Hz} \\ \therefore \text{ Beats} = 77 - 70 = 7 \text{ Hz} \\ 5. \quad \text{Answer (A, B, C)}$$

i = 0.5 × 10⁻³ c/s = n × 1.6 × 10⁻¹⁹
⇒ n = 3.1 × 10¹⁵
∴ P = 3.1 × 10¹⁵ × 1.6 × 10⁻¹⁹ × 10⁴ = 5 J/s

$$\lambda_{min} = \frac{1242}{10^4}$$
 nM = 1.24 Å

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 14]

6. Answer (B, D)

$$\frac{100 - T_c}{R/2} = \frac{T_c - 0}{R/2} + \frac{T_c - 25}{R}$$

$$\Rightarrow T_c = 45^{\circ}C$$

$$i_{CB} = \frac{45}{5} = 9W; i_{CD} = \frac{45 - 25}{5} = 4W$$

Answer (60)
 One-fourth of total flux originated from A terminates at B

$$\therefore 2\pi (1 - \cos \theta) = \frac{1}{4} \times (4\pi)$$
$$\Rightarrow 1 - \cos \theta = \frac{1}{2}$$
$$\Rightarrow \cos \theta = \frac{1}{2}$$
$$\Rightarrow \theta = 60^{\circ}$$

8. Answer (20)

$$V = \frac{40 \times 20}{(40 - 20)} = 40 \text{ cm}$$

- \therefore object distance for mirror = 40 20 = 20 cm
- \therefore Image distance from mirror = 20 cm

∵mirror is rotated by 30° clockwise image would

rotate by 60°

: Distance OP = 20 cm

9. Answer (22)

$$\phi_1 = \frac{\mu_0 / a}{2\pi} \ln 2$$

$$\phi_2 = -\frac{\mu_0 / a}{2\pi} \left(\ln \frac{3}{2} \right)$$

$$\therefore \Delta \phi = \frac{\mu_0 / a}{2\pi} \ln 3$$

$$= \frac{2 \times 10^{-7} \times 10 \times 0.1}{10^{-2}} \times 1.1$$

$$= 22 \times 10^{-6} C$$

10. Answer (15)

$$\begin{array}{c} \downarrow \\ \mu_{2} \\ \Delta x = (\mu_{2} - \mu_{1}) \times t \\ \Rightarrow 5 \times \left(\frac{\lambda_{0}}{2}\right) = \left(\frac{3}{2} - \frac{4}{3}\right) \times t \\ \Rightarrow 5 \frac{\lambda_{0}}{2} = \frac{1}{6} \times t \\ \Rightarrow t = 15\lambda_{0} \end{array}$$

11. Answer (20)

$$V = \frac{15 \times 10}{(15 - 10)} = 30 \text{ cm} \Rightarrow m = \frac{30}{15} = 2$$

$$\therefore V_x = -2^2 \times 4\hat{i} + 4\hat{i} = -12\hat{i}$$

$$V_y = -2 \times (11 - 2)\hat{j} + 2\hat{j} = -16\hat{j}$$

$$\therefore V = \sqrt{V_x^2 + V_y^2} = 20 \text{ m/s}$$
12. Answer (15)

$$\overrightarrow{V_y} = \frac{3q^2}{4\pi \in_0 r_0^2} \text{ and } mv_0r_0 = n\frac{h}{2\pi} = \frac{h}{2\pi}$$

$$\Rightarrow mV_0^2 \times \frac{h}{2\pi mV_0} = \frac{3q^2}{4\pi \in_0}$$

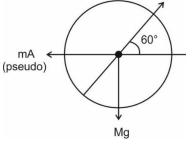
$$\Rightarrow V_0 = \frac{3q^2}{2 \epsilon_0 h}$$

$$\Rightarrow n = 15$$
13. Answer (14)
Using projection concept

$$F = \int_2^4 \frac{\mu_0 l_1}{2\pi r} \times l_2 dr = \frac{\mu_0}{2\pi} \times l_1 l_2 \ln(2)$$

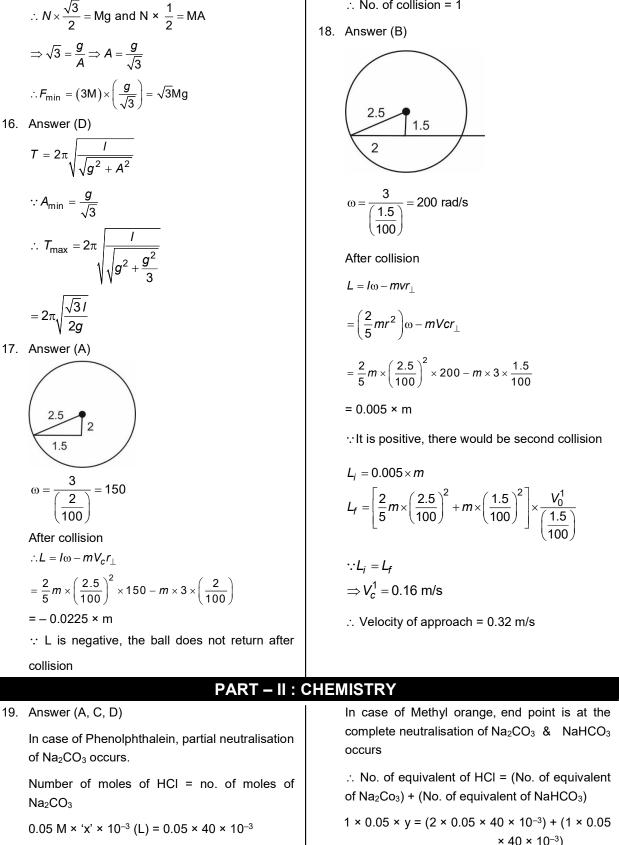
$$= 2 \times 10^{-7} \times 5 \times 20 \times (0.7)$$

$$= 14 \times 10^{-6} \text{ N}$$
14. Answer (08)


$$W_1 = 32P_0 \times (2V_0 - V_0) = 32P_0V_0$$

$$W_2 = \frac{(32P_0 \times 2V_0) - P_0 \times 16V_0}{(\frac{5}{3} - 1)} = 72P_0V_0$$

$$W_4 = 32P_0V_0 \ln\left(\frac{1}{3^2}\right) = -160P_0V_0 \ln 2$$


$$= -112 P_0V_0$$

$$\therefore \Delta Q = \sum W = (32 + 72 + 16 - 112)P_0V_0 = 8P_0V_0$$
15. Answer (B)
At minimum acceleration forces on top cylinder

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 15]

.: No. of collision = 1

∴ x = 40 ml

x = 40 ml & y = 120 ml

in option (A) : $y - x = 80 \text{ ml} \Rightarrow 120 - 40 = 80$

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 16]

: option A is correct

In option (B) :
$$x + y = 80$$
 but $x = 40 \& y = 120$

therefore option B is incorrect

If the titration is started with phenolphthalein indicator then in solution

no of moles of NaHCO₃ = 2 × n_{NaHCO_3} (due to partial neutralisation of Na₂CO₃)

: no. of equivalent of HCI = no. of eq. of NaHCO₃

$$1 \times V \times 0.05 = 1 \times 2 \times 0.05 \times 40 \times 10^{-3}$$

∴ V_{HCI} = 80 ml

 $V_{HCI} = 2x \Longrightarrow 2 \times 40 = 80 \text{ mI}$

: Option C is correct

When some solution is titrated with 0.1 M NaOH no. of eq. of NaOH = no. of eq. of NaHCO₃

$$1 \times 0.1 \times V = 1 \times 0.05 \times 40 \times 10^{-3}$$

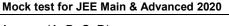
 $V = 20 \times 10^{-3} L \Longrightarrow 20 mI$

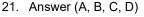
We know that x = 40 ml

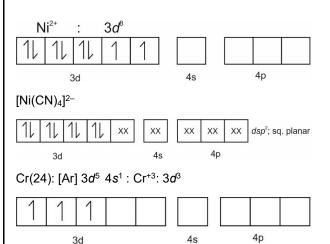
$$\therefore \frac{x}{2} = 20 \text{ ml}$$
. Thus option D is correct

20. Answer (A, B, C)

* The greater the difference between activation energies, the larger the selectivity. On going from activation energy difference of 1 Kcal (chlorination) to about 3 Kcal (bromination) can mean the difference between a reaction with a selectivity of 3.5 : 1 for chlorination & 97 : 1 for bromination

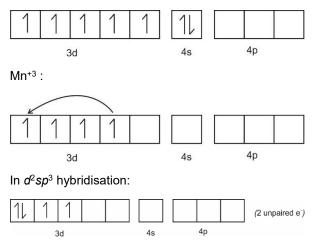

Reactivity order: $F_2 > Cl_2 > Br_2 > l_2$


$$E_a$$
 order: $F_2 < Cl_2 < Br_2 < l_2$


$$CH_{2} - H \xrightarrow{88 \text{ Kcal}} O CH_{2}^{\bullet}$$

$$H_2C = CH - CH_2 > H_2C = CH$$

(Due to resonance stabilisation)



Already two 3*d* orbitals are vacant to form inner orbital d-complex & always have unpaired e^- so octahedral complexes are always paramagnetic.

In Tetrahedral complexes of Zn^{+2} , d-Orbital is completely filled so all complexes are diamagnetic

Mn(25):

22. Answer (A, B, C)

e⁻ density is more on N atom in $(C_2H_5)_2NH$ than $C_2H_5NH_2$ because more +I effect. So $(C_2H_5)_2NH$ more basic than $C_2H_5NH_2$. $C_6H_5NH_2$ & $C_6H_5NHCH_3$ less basic than $(C_2H_5)_2NH$ & $C_2H_5NH_2$ due to delocalisation of e⁻ pair

Hence the order of basicity of given compounds are:

 $C_6H_5NH_2 < C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$ and higher the basic strength, the lower is the Pkb value therefore: for Pkb

$$C_6H_5NH_2 > C_6H_5NHCH_3 > C_2H_5NH_2 > (C_2H_5)_2NH$$

In the gaseous phase there is no effect of solvation so basic strength maily depends upon the +I effect, Higher the +I effect, Stronger is the base. Therefore:

 $(C_2H_5)_3N > (C_2H_5)_2NH > C_2H_5NH_2 > NH_3$ so option B is correct

More H-bonding, more B. Pt

∴ B.Pt of C₂H₅NH₂ > (C₂H₅)₂NH, further oxygen is more E.N than Nitrogen thus C₂H₅OH forms stronger H-bond than C₂H₅NH₂ therefore correct of B.Pt is

$$(CH_3)_2NH < C_2H_5NH_2 < C_2H_5OH$$

so option C is correct

More H-bonding, more solubility \therefore Solubility of $C_2H_5NH_2 > (C_2H_5)_2NH$ further solubility of amine decreases with inverse in molecular mass because hydrophobic part increases thus statement D is correct

23. Answer (A, D)

The order with t-alkyl the best migrating sec. alkyl closely followed by phenyl then ethyl then methyl, very roughly follows the order in which the group are able to stabilise a positive charge. Primary groups are much more reluctant to undergo migration than sec. ones or alkyl groups and this make regioselective Baeyer-Villiger reaction possible

24. Answer (A, B, C, D)

At eqm. moles of CO_3^{-2} ions formed

After Reaction conc. of $K_2C_2O_4 = \frac{0.1162}{0.5} = 0.2324$ M

Option (D) correct

at eqm
$$\left[CO_{3}^{-2} \right] = \frac{0.0358}{0.5} \Rightarrow 0.0716 \text{ M}$$

: Option (B) correct

For Ag₂C₂O₄, K_{SP} = [Ag⁺]²
$$\begin{bmatrix} C_2 O_4^{-2} \end{bmatrix}$$

$$\Rightarrow$$
 1.29 × 10⁻¹¹ = [Ag⁺]² × 0.2324

Mock test for JEE Main & Advanced 2020

$$\left[\mathsf{Ag}^{+} \right] = \sqrt{\frac{1.29 \times 10^{-11}}{0.2324}} \Longrightarrow 7.45 \times 10^{-6}$$

Option (C) correct

$$K_{SP}(Ag_2CO_3) = \left[Ag^+\right]^2 \left[CO_3^{-2}\right]$$

$$\Rightarrow \frac{1.29 \times 10^{-11}}{0.2324} \times 0.0716$$

$$\Rightarrow 3.97 \times 10^{-12} \text{ mol}^3 \text{ L}^{-3}$$
∴ Option (A) correct
25. Answer (04)

Cations soluble in excess NH_3 solution are :

$$\mathrm{Ni^{+2}}\left(\mathrm{aq.}\right),\mathrm{Cd^{+2}}\left(\mathrm{aq.}\right),\ \mathrm{Zn^{2+}}\left(\mathrm{aq.}\right),\ \mathrm{Ag^{+}}\left(\mathrm{aq.}\right)$$

26. Answer (04)

 E_{inc} = work function (ϕ) + K.E

$$4.9 = 3.4 + \text{K.E} \Rightarrow \text{K.E} = 1.5 \text{ eV}$$

&
$$\lambda = \left(\frac{150}{\text{K.E}}\right)^{\frac{1}{2}} \therefore \lambda = \sqrt{\frac{150}{1.5}} \Rightarrow 10\text{\AA}$$

We know that
$$\Delta P \cdot \Delta x = \frac{h}{4\pi}$$

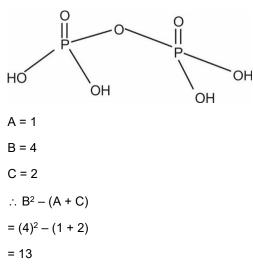
$$\frac{h}{\lambda^2} \Delta \lambda \times \Delta x = \frac{h}{4\pi}$$

or
$$\frac{\Delta \lambda}{\left(10 \times 10^{-10}\right)^2} \times \frac{25}{4\pi} \times 10^{-10} = \frac{1}{4\pi}$$
$$\therefore \Delta \lambda = 4 \times 10^{-10} \text{ m} = 4\text{\AA}$$

27. Answer (64)

Process AC is polytropic : (P = KV) & molar heat capacity (Cm) = C_v + $\frac{R}{2} \Rightarrow 2R$

Process AB is isobaric process \therefore $c_m = c_p = \frac{5}{2} R$

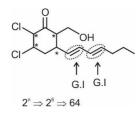

$$\frac{q_{(AC)}}{q_{(AB)}} = \frac{\int_{T_A}^{T_C} n.C_m.\Delta T}{\int_{T_A}^{T_B} n.C_{p.\ m}.\Delta T} \Rightarrow \frac{2R}{\frac{5}{2}R} \Rightarrow 0.8$$
$$\therefore \left(\frac{q_{(AC)}}{q_{(AB)}}\right)^2 \times 100 = 64$$

Aakash Educational Services Limited – Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 18]

28. Answer (12)

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\$$

29. Answer (13)


30. Answer (25)

$$\begin{split} \Delta T_{b} &= m \times K_{b} \\ \Rightarrow \frac{\text{effective no. of moles of } (\text{Na}_{3}\text{PO}_{4} + \text{MgSO}_{4}) \times 1000}{\text{mass of solvent (in gm)}} \times K_{b} \\ &= \frac{\left(\frac{8.2}{164} \times 2.5\right) + \left(\frac{12}{120} \times 1.6\right)}{79.8} \times 1000 \times 0.50 \end{split}$$

$$\Delta T_{b} = 1.785^{\circ}C$$

$$14 \times \Delta Tb = 14 \times 1.785 = 25$$

31. Answer (64)

32. Answer (35)

$$A(aq) \longrightarrow B(aq) + C(aq)$$

Initial con. (M) a

Conc. At time t a – x x x

Specific rotations of A, B and C are given as

 R_A = +40°, R_B = - 60° and Rc = +50°

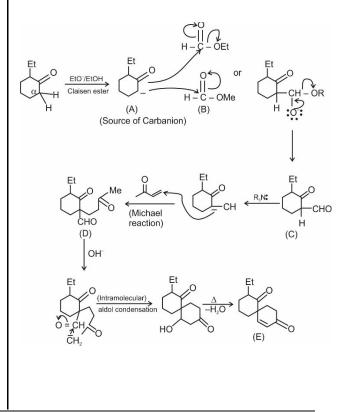
Angle of rotations of reaction mix at (t = 0)

$$R_0 = aR_A = +40^\circ \Rightarrow a = 1 M$$

At time t = 46.06 min

$$R_t = (a - x) R_A + xR_B + xR_C = 0^\circ$$
 (given)

 $40^{\circ} + (R_{B} + R_{C} - R_{A})x = 0$


$$(-60 + 50 - 40)x = -40; x = 0.8$$

Rate constant, K = $\frac{2.303}{46.06} \log \frac{1}{1-0.8}$

$$= \frac{2.303 \times 0.7}{46.06} = 0.035$$

 $= 35 \times 10^{-3} \text{ min}^{-1} = \text{Y} \times 10^{-3} \text{ min}^{-1}$

33. Answer (D)

Aakash Educational Services Limited – Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 19]

34. Answer (B) * Base Area from figure (B) $\sin 60^\circ = \frac{x}{2} \Rightarrow x = a \sin 60^\circ$ \Rightarrow 0.866 a \therefore Area = ax \Rightarrow 0.866 a² Volume = Area × height \Rightarrow 0.866 a² × (1.633 a) 35. Answer (A) $= 1.41 a^3 = 46.4 Å^3$ $Z_{\text{eff}} = \text{corners} + \text{body centre} \Rightarrow \left(8 \times \frac{1}{8} + 1\right) \Rightarrow 2$ ⇒ a = 3.2 Å 36. Answer (B) atoms/unit cell * nearest neighbour's are along the base edge Atomic weight of Mg = 24.3 g at 3.2 Å $\therefore \text{ Mass} = \frac{2 \times 24.3}{6 \times 10^{23}} \Rightarrow 8.07 \times 10^{-23} \text{ gm}$ * 12 neighbour atoms, 6 atoms in the same plane, 3 above and 3 atoms below Volume = $\frac{m}{d} = \frac{8.07 \times 10^{-23}}{1.74 \text{ g cm}^{-3}} \times \left(10^8 \text{ \AA}\right)^3 = 46.4 \text{ \AA}^3$ PART – III : MATHEMATICS 37. Answer (A, D) a, b, c are in AP Circles with points $P\left(2t_1, \frac{2}{t_1}\right)$ and $Q\left(2t_2, \frac{2}{t_2}\right)$ as we know $\cos A + \cos B + \cos C = 1 + \frac{r}{R}$ $\therefore 4\sin^2\frac{B}{2} + \cos B = 1 + \frac{r}{R}$ diameter given by $(x-2t_1)(x-2t_2)+(y-\frac{2}{t_1})(y-\frac{2}{t_2})=1$...(i) $2(1 - \cos B) + \cos B = 1 + \frac{r}{R}$ Given that slope of PQ = 1 $\cos B = 1 - \frac{r}{R} \Rightarrow \text{Option (C)}$ $-\frac{1}{t_1t_2} = 1 \rightarrow t_1t_2 = -1$ $\cos A + 1 - \frac{r}{R} + \cos C = 1 + \frac{r}{R}$ (i) $\rightarrow (x^2 + y^2 - 8) + (t_1 + t_2) (x - y) = 0$ $\cos A + \cos C = \frac{2r}{R} \Rightarrow \text{Option (A)}$ This is in the form $5 + \lambda L = 0$. The circles passes through points of intersection of 39. Answer (A, B) $x^2 + y^2 = 8$, x - y = 0minimum % of combatant who lost one eye and *i.e.* (2, 2), (-2, -2)one leg = 75 + 80 - 100 = 55%38. Answer (A, C, D) minimum % of combatant who lost one eye, one leg and one arm = 55 + 90 - 100 = 45% $\cos A + \cos C = 4 \sin^2 \frac{B}{2}$ min % of comparts lost all organs $2\cos\frac{A+C}{2}\cos\frac{A-C}{2} = 4\sin^2\frac{B}{2}$ = 45 + 85 - 100 = 30%40. Answer (B, D) $\cos\frac{A-C}{2} = 2\sin\frac{B}{2}$ $\because g(f(x)) = x \Rightarrow g'(f(x)) = \frac{1}{f'(x)}$ $2\cos\frac{B}{2}\cos\frac{A-C}{2} = 2\sin B$ $sinA + sinC = 2sinB \Rightarrow Option (D)$

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 20]

$$\Rightarrow g''(f(x))f'(x) = -\frac{1}{(f'(x))^2}f''(x)$$

$$\Rightarrow g''(f(x)) = -\frac{f''(x)}{(f'(x))^3}$$

$$\Rightarrow g'''(f(x))f'(x) = \frac{-(f'(x))^3 f'''(x) + f''(x) \cdot 3(f'(x))^2 f''(x)}{(f'(x))^6}$$

$$\Rightarrow g'''(f(x)) = \frac{3(f''(x))^2 - f'(x) f'''(x)}{(f'(x))^5}$$

41. Answer A, B()

Given equation is $x^3 - y^2 = 0$...(i)

 $P = (4m^2, 8m^3)$

(i)
$$\Rightarrow 3x^2 - 2y\frac{dy}{dx} = 0 \Rightarrow \frac{dy}{dx} = \frac{3x^2}{2y}$$

at $P(4m^2, 8m^3), \frac{dy}{dx} = \frac{3(16m^4)}{2(8m^3)} = 3m^2$

equation of tangent at P is

$$y - 8m^3 = 3m (x - 4m^2)$$

 $y = 3mx - 4m^3 \qquad \dots$ (ii)

By solving (i) , (ii) we get $x = 4m^2$, m^2

Let
$$x = m^2$$

(ii)
$$\Rightarrow y = 3m^3 - 4m^3 = -m^3$$

Let Q =
$$(m^2, -m^3)$$

Slope of the tangent at Q is

$$\frac{dy}{dx}=\frac{3m^4}{2\left(-m^3\right)}=\frac{-3}{2}m\,.$$

Slope of the normal at Q is $\frac{2}{3m}$

Given that slope of the tangent at P is equal to slope of the normal at Q

$$\frac{2}{3m} = 3m \Longrightarrow m^2 = \frac{2}{9} \Longrightarrow m = \pm \frac{\sqrt{2}}{3}$$

42. Answer (A, C, D)

Let
$$I = \int \frac{\sin^2 x}{\left(x - \sin x \cos x\right)^2} dx$$

$$I = \int \frac{\sin^2 x}{\cos^4 x (x \sec^2 x - \tan)} dx = \int \frac{\sec^2 x \tan^2 x}{(x \sec^2 x - \tan x)^2} dx$$
$$\begin{bmatrix} \frac{d}{dx} (x \sec^2 x - \tan x) = x(2 \sec x)\\ (\sec x \tan x) + \sec^2 x - \sec^2 x \end{bmatrix}$$
$$= 2x \sec^2 x \tan x$$
$$I = \frac{1}{2} \int \frac{2x \sec^2 x \tan x}{(x \sec^2 x - \tan x)^2} \times \frac{\tan x}{x} dx$$
$$I = \frac{1}{2} \begin{bmatrix} \frac{\tan x}{x} \int \frac{2x \sec^2 x \tan x}{(x \sec^2 x - \tan x)^2} dx - \frac{1}{x} \end{bmatrix}$$
$$\int \begin{bmatrix} \frac{x \sec^2 x - \tan x}{x^2} \int \frac{2x \sec^2 x - \tan x}{(x \sec^2 x - \tan x)^2} dx \end{bmatrix}$$
$$I = \frac{1}{2} \begin{bmatrix} \frac{\tan x}{x} \times \frac{-1}{x \sec^2 x - \tan x} - \frac{1}{x \sec^2 x - \tan x} \\ \int \begin{bmatrix} \frac{x \sec^2 x - \tan x}{x^2} \int \frac{2x \sec^2 x - \tan x}{(x \sec^2 x - \tan x)^2} dx \end{bmatrix}$$
$$I = \frac{1}{2} \begin{bmatrix} \frac{\tan x}{x} \times \frac{-1}{x \sec^2 x - \tan x} - \frac{1}{x \sec^2 x - \tan x} \\ \int \begin{bmatrix} \frac{x \sec^2 x - \tan x}{x^2} + \frac{-1}{x \sec^2 x - \tan x} \end{bmatrix}$$
$$I = \frac{1}{2} \begin{bmatrix} \frac{\tan x}{x} \times \frac{-1}{x \sec^2 x - \tan x} - \frac{1}{x \sec^2 x - \tan x} \\ \int \begin{bmatrix} \frac{x \sec^2 x - \tan x}{x^2} + \frac{-1}{x \sec^2 x - \tan x} \end{bmatrix}$$

43. Answer (06) sinx $\rightarrow 0$ as $x \rightarrow 0$

Let $t = \sin x$

$$L = \lim_{t \to 0} \frac{t + \log\left(\sqrt{1 + t^2} - t\right)}{t^3}$$

Apply L-Hospital rule

$$L = \lim_{t \to 0} \frac{1 + \frac{1}{\sqrt{1 + t^2} - t} \left(\frac{1}{2\sqrt{1 + t^2}}(2t) - 1\right)}{3t^2}$$
$$L = \lim_{t \to 0} \frac{1 + \frac{1}{\sqrt{1 + t^2} - t} \left(\frac{t - \sqrt{1 + t^2}}{\sqrt{1 + t^2}}\right)}{3t^2}$$

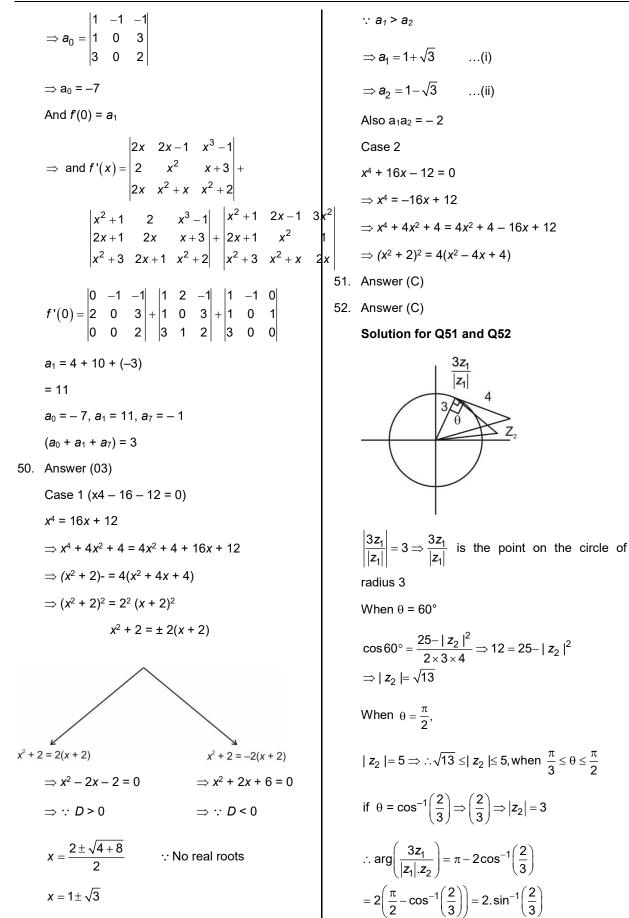
$$L = \lim_{t \to 0} \frac{1 - \frac{1}{\sqrt{1 + t^2}}}{3t^2} = \lim_{t \to 0} \frac{\sqrt{1 + t^2} - 1}{3t^2 \sqrt{1 + t^2}}$$

Aakash Educational Services Limited – Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 21]

$$L = \lim_{t \to 0} \frac{\left(\sqrt{1 + t^2} - 1\right)}{3t^2 \sqrt{1 + t^2} \left(\sqrt{1 + t^2} + 1\right)}$$
$$= \lim_{t \to 0} \frac{1}{3\sqrt{1 + t^2} \left(\sqrt{1 + t^2} + 1\right)}$$
$$L = \frac{1}{3(1)(1 + 1)} = \frac{1}{6}$$

44. Answer (06)

equation is $6\int_{0}^{x} f(t) dt = 3xf(x) - x^{3}$ Given differentiate with respect to x on both sides $6[f(x) - 0] = 3(x f'(x) + f(x)) - 3x^2$ $2f(x) = xf(x) + f(x) - x^2$ $xf'(x)-f(x)=x^2$ $\cot y = f(x) \rightarrow \frac{dy}{dx} = f'(x)$ $x\frac{dy}{dx}-y=x^2$ $\Rightarrow \frac{dy}{dx} - \frac{y}{x} = x, P = -\frac{1}{x}, Q = x$ $I.F. = e^{\int Pdx} = e^{-\int \frac{1}{x}dx} = e^{-\log x} = \frac{1}{x}$ $\sum_{n=1}^{\infty} tr(P_n) = 1$ Solution is $y(I.F.) = \int Q(I.F.)dx + C$ $y\left(\frac{1}{x}=\int x\left(\frac{1}{x}\right)dx+C\right)$ $\Rightarrow \frac{3k}{1-k} = 1$ $\frac{y}{x} = x + C$ $\Rightarrow 3k = 1 - k$ $y = x^2 + Cx$ $\Rightarrow 4k = 1$ $f(x) = x^2 + Cx$ $\Rightarrow k = \frac{1}{4}$ $f(1) = 2 \Rightarrow 2 = 1 + C \Rightarrow C = 1$ $f(x) = x^2 + x$ f(2) = 4 + 2 = 645. Answer (02) 46. Answer (00) $A = \begin{bmatrix} 4 & -1 \\ 15 & -4 \end{bmatrix}$ b = x - 1 $A^{2} = \begin{bmatrix} 4 & -1 \\ 15 & -4 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ 15 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$ c = (-2x)


 \Rightarrow tr (A²ⁿ) = 2 ...(i) $B = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix}$ $B^{2} = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 3 & -6 \\ 1 & -2 \end{bmatrix} = B$ \Rightarrow tr (Bⁿ) = 1 ...(ii) $C = \begin{vmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{vmatrix}$ $C^{2} = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix}$ $C^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ \Rightarrow tr (C³ⁿ) = 0 ...(iii) Now from (i), (ii), (iii) $P_{n} = k^{n} \begin{bmatrix} 2 & 1 & tr(C^{2n}) \\ tr(A^{n}) & 1 & tr(C^{n}) \\ tr(A^{3n}) & 1 & 0 \end{bmatrix}$ \Rightarrow tr (P_n) = kⁿ × 3 \Rightarrow 3(k + k² + k³ +∞) = 1 Now $\left(\frac{1}{k}\right)^{\sqrt{k}} = (4)^{1/2} = 2$ Consider a = x + 1

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 22]

a + b + c = x + 1 + x - 1 - 2x = 0 $\Rightarrow a^3 + b^3 + c^3 = 3abc$ Now from above $(x + 1)^3 + (x - 1)^3 - 8x^3$ = 3((x + 1) (x - 1) (-2x))= 6(x(1 + x)(1 - x)) $= 6(x(1-x^2))$ $\Rightarrow I(x) = \int \frac{x^2 (1 - x^2)^2 (1 - 3x^2) dx}{1 + (6x(1 - x^2))^3}$ $\Rightarrow I(x) = \int \frac{x^2 (1 - x^2)^2 (1 - 3x^2) dx}{1 + 6^3 (x - x^3)^3}$ Let $6^3 (x - x^3)^3 = t$ $\Rightarrow 6^3 \times 3(x - x^3)^2 (1 - 3x^2) dx = dt$ $\Rightarrow 3 \times 6^3 x^2 (1 - x^2)^2 (1 - 3x^2) dx = dt$ $\Rightarrow I(x) = \frac{1}{3 \times 6^3} \int \frac{dt}{1+t}$ $=\frac{1}{3\times 6^3}\ln\left(1+6^3\left(x-x^3\right)^3\right)+C$ Now I(0) = 0 $\frac{1}{3 \times 6^3} \ln 1 + C = 0$ \Rightarrow C = 0 Now $I(1) = \frac{1}{3 \times 6^3} \ln 1 + 0 \ [\because C = 0]$ $\Rightarrow I(1) = 0$ 47. Answer (07) $\frac{dy}{dx} = y \frac{(1-x)}{e^x} - \frac{y}{x}$ $\Rightarrow \frac{1}{v} \frac{dy}{dx} = \frac{1-x}{e^x} - \frac{1}{x}$

 $\Rightarrow \frac{1}{x} + \frac{1}{y}\frac{dy}{dx} = e^{-x} - xe^{-x}$ $\Rightarrow \frac{dx}{x} + \frac{1}{y}dy = \left(e^{-x} - xe^{-x}\right)dx$

On integrating $\Rightarrow \ln x + \ln y = \int e^{-x} dx - \int x e^{-x} dx$ $\Rightarrow \ln(xy) = xe^{-x} + \int xe^{-x}dx - \int xe^{-x}dx$ $\Rightarrow \ln(xy) = xe^{-x} + C$...(i) $(1,e^{1/e}) \rightarrow (i)$ $\Rightarrow ln(1 \times e^{1/e}) = 1 \times e^{-1} + C$ $\Rightarrow \frac{1}{2} \ln e = \frac{1}{2} + C$ \Rightarrow C = 0 $\Rightarrow \ln(xy) = xe^{-x}$ Now for x = 2 $\ln 2y = 2e^{-2}$ $\Rightarrow \ln(2y) = \frac{2}{2}$ $\Rightarrow y = \frac{1}{2} \left(e^{2/e^2} \right)$ On comparing with $v = ae^b$ $\Rightarrow a = \frac{1}{2}, b = \frac{2}{a^2}$ 48. Answer (38) $p = {}^{22}C_{18} \times 2 \times 2 \times 2 \times 2$ $q = {}^{22}C_{19} \times 2 \times 2 \times 2$ $\frac{p}{q} = \frac{\frac{1}{4 \times 3 \times 2 \times 1}}{22 \times 21 \times 20} \times 2$ $=\frac{19}{2}=9.5$ 49. Answer (03) On expanding highest power of x is 7 and its coefficient $a_7 = -1$ $f(0) = a_0$

Aakash Educational Services Limited – Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 24]

Test-4A_Paper-1_(Code-A

- 53. Answer (C)
- 54. Answer (C)

Solution for Q53 and Q54

If exactly one element is zero then number of invertible matrices = $4 \times {}^{4-3+2}C_2$ = 12 and if exactly two elements are zero, then number of invertible matrices = $2 \times {}^{4-2+1}C_1$ = 6

- \therefore the number of invertible matrices
- M are = 12 + 6= 18
- \therefore $|M|_{max} = 4$ and $|M|_{min} = -4$
- ∴ |4+4|= 8

