Time : 3 hrs

Mock Test_CoE_XII for JEE (Advanced) - 2020

Test - 2A (Paper - II)_Actual Pattern-2015

Topics covered:

PHYSICS : MOCK TEST on Complete Syllabus
CHEMISTRY : MOCK TEST on Complete Syllabus
MATHEMATICS : MOCK TEST on Complete Syllabus

General Instructions:

Pattern of the questions are as under:
(i) The question paper consists of 3 parts (Physics, Chemistry and Mathematics). Each part has 3 sections.
(ii) Section-1: This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 . Each question carries +4 marks for correct answer. There is no negative mark for wrong answer.
(iii) Section-2: This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which one or more than one is/are correct. Each question carries $\mathbf{+ 4}$ marks for correct answer, $\mathbf{0}$ mark if not attempted and $\mathbf{- 2}$ marks for wrong answer.
(iv) Section-3: This section contains 2 paragraphs. Based upon each paragraph, 2 multiple choice questions have to be answered. Each question has one or more than one correct answer and carries +4 marks for correct answer, $\mathbf{0}$ mark if not attempted and $\mathbf{- 2}$ marks for wrong answer.

PART - I: PHYSICS

SECTION - 1
 Integer Value Type

This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. Examples- If the correct answer to question numbers X, Y and Z (say) are 6,0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

1. Large non conducting plate having mass m and uniform charge density σ is connected to block of same mass as shown. System is related at $t=0$. At time $t=t_{0}$ a charge particle (q, m) is projected with velocity $\vec{V}=V_{0} \hat{i}+V_{0} \hat{k}$ near the plate. If magnetic force experiences by charge particle just after projection is $\frac{\mu_{0} \sigma g t_{0} V_{0} q}{K}$, then find value of K

2. Two parallel light beam of intensities $4 I_{0}$ and $9 I_{0}$ are incident normally on standard YDSE after passing through prism. If light beams falls normally on prism and after passing through prism it falls normally on slits as shown then resultant intensity at point P on the screen comes into KI_{0}, find K

3. A tall vessel having liquid of density 4ρ is made to accelerate rightward with constant acceleration a $=2 g$. A small spherical ball of density ρ situated at its left bottom corner of the vessel is released from rest. If it collide with vessel wall at point P shown in figure, then value of y (in m) is equal to

4. A uniform rod is kept horizontal with the help of a string at B, end A of rod is kept over a smooth obstacle. If just after cutting the string normal reaction at A comes out K newton then value of K is

5. A point mass m performs circular motion in $Y-Z$ plane under the action of gravitational force exerted by two point masses M situated on X -axis at a distance 4 R from the centre of circle (radius 3 R) as shown. If speed of point mass is $V=\sqrt{K\left(\frac{6 G M}{125 R}\right)}$, then value of K is

6. Two vessels of different materials are similar in size in every aspect. The same quantity of ice filled in them gets melted in 20 minute and 40 minutes respectively. If ratio of thermal conductivity of the material is $K: 1$, then value of K is
7. A pendulum has time period T in air. When it is made to oscillate in water. It acquired a time period T^{\prime}. If $\frac{T^{\prime}}{T}=\sqrt{2}$, then specific gravity of pendulum bob is equal to
8. A vessel contains a mixture of 1 mole of O_{2} and 2 mole of N_{2} at 300 K . If ratio of average rotational K.E. per O_{2} molecule to that of N_{2} molecule is $1: \mathrm{K}$ then value of K is

SECTION - 2

One or More Options Correct Type

This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which one or more than one is/are correct.
9. In the shown circuit variable resistance R is adjusted so that power consumed by this resistance R is maximum. Choose the correct options for this value of R.

(A) Value of R is 2Ω
(B) Reading of Ammeter is $\frac{5}{3} \mathrm{~A}$
(C) Rate of work done by the battery is 100 W
(D) Reading of Ammeter is $\frac{10}{3} \mathrm{~A}$
10. In the shown circuit initially switch S was open for long time. Now if switch S is closed, then

(A) Charge flown in the direction 3 is $-\frac{1}{3} \mu C$
(B) Charge flown in the direction 2 is $\frac{5}{4} \mu C$
(C) Work done by battery is $\frac{8}{3} \mu \mathrm{~J}$
(D) Work done by battery is $\frac{5}{3} \mu \mathrm{~J}$
11. If equation of standing wave in a medium is given as
$y=(2 \mathrm{~cm}) \sin (2 \pi x) \cos (100 \pi t)$, here x is in cm and t is in sec then
(A) Total number of nodes between $x=\frac{1}{8} \mathrm{~cm}$ to $x=\frac{9}{4} \mathrm{~cm}$ are four
(B) Phase difference between two particle situated at $x_{1}=\frac{1}{8} \mathrm{~cm}$ and $x_{2}=\frac{5}{4} \mathrm{~cm}$ is zero
(C) Amplitude of the particle at $x=\frac{1}{4} \mathrm{~cm}$ is 2 cm
(D) Amplitude of the particle at $x=\frac{1}{4} \mathrm{~cm}$ is 1 cm .
12. A point object O is placed in between two plane mirrors $M-1$ and $M-2$ as shown then (If two images coincide with each other then consider them as two different images formed by mirror and count them)

(A) Total no. of images formed by $\mathrm{M}-1$ is 6
(B) Total no. of images formed by $\mathrm{M}-1$ is 5
(C) Total no. if images formed by $\mathrm{M}-2$ is 6
(D) Total no. of image formed by $\mathrm{M}-1$ is 7
13. The radiation emitted by lithium atom when an electron jumps from $n=4$ to $n=3$ falls on a metal surface to produce photoelectrons. When photoelectrons with maximum K.E are made to move perpendicular to a uniform magnetic field $4 \times 10^{-4} \mathrm{~T}$, they trace out a circular path of radius 1.68 cm . Choose the correct options
(A) Wavelength of radiation falling on the metal is $2 \times 10^{-7} \mathrm{~m}$
(B) Wavelength of radiation falling on the metal is $4 \times 10^{-6} \mathrm{~m}$
(C) Work function of the metal is 2 eV
(D) Work function of the metal is 4 eV
14. In the shown arrangement initially block of mass m is at a distance of $\mathrm{I}=2 \mathrm{~m}$ from pulley. If a force $\mathrm{F}=$ mg is force is applied at one end of the string then (assuming all surface to be smooth) ($\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$)

(A) Time after which black collides with the pulley is $\sqrt{\frac{4}{15}} \mathrm{~s}$
(B) Time after which block collides with the pulley is $\sqrt{\frac{2}{15}} \mathrm{~s}$
(C) Acceleration of 4 m during motion is $5 \mathrm{~m} / \mathrm{s}^{2}$
(D) Acceleration of 4 m during motion is $10 \mathrm{~m} / \mathrm{s}^{2}$
15. The displacement (X) and the velocity (V) of a particle moving in the positive X-direction are related as $v=10 \sqrt{x}$. At $t=0$, the particle was at $x=0$, then
(A) Initial velocity of the particle was zero
(B) Initial velocity of the particle was $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(C) The acceleration of the particle is $1.5 \mathrm{~m} / \mathrm{s}^{2}$
(D) The acceleration of the particle is $50 \mathrm{~m} / \mathrm{s}^{2}$
16. Displacement of a particle in a string placed along x-direction is represented by y . Which of the following expression for y describe wave motion
(A) $y=\cos k x \sin \omega t$
(B) $y=k^{2} x^{2}-\omega^{2} t^{2}$
(C) $y=\cos ^{2}(k x+\omega t)$
(D) $y=\cos \left(k x^{2}-\omega^{2} t^{2}\right)$

SECTION - 3

Paragraph Type

This section contains 2 paragraphs, each describing theory, experiment, data etc. Four questions relate to two paragraphs with two questions on each paragraph. Each question pertaining to a particular passage should has one or more than one correct answers among the four given choices (A), (B), (C) and (D).

Paragraph for Question Nos. 17 and 18

Consider the shown A.C circuit. RMS voltage of 100 volt and 50 Hz is applied between point A and B

17. For the shown circuit choose the correct options
(A) $I_{1}=50 \sqrt{2}$
(B) $I_{1}=50 \mathrm{~A}$
(C) $I=100 \mathrm{~A}$
(D) $I=100 \sqrt{2}$
18. If resistance R_{1} is short circuited then choose the correct option
(A) $I_{1}=50 \sqrt{2} A$
(B) $I_{1}=50 \mathrm{~A}$
(C) $I_{2}=100 \sqrt{2} \mathrm{~A}$
(D) $I_{2}=100 \mathrm{~A}$

Paragraph for Question Nos. 19 and 20

Starting from point A an insect (mass m) perform motion in a groove $A B$ made along the horizontal diameter inside the uniform circular disk. Disk is hinged at point P so that it can rotate freely in vertical plane as shown. Insect perform motion along groove in such a way so that acceleration of centre of mass of disk is always zero (Given $\left.\frac{R}{g}=\frac{1}{\pi^{2}} \sec ^{2}\right)\left(\pi^{2}=10\right)$

19. If insect start its motion from point A , at $t=0$ then
(A) At $t=1 \mathrm{sec}$ insect will be at point B
(B) At $t=2 \mathrm{sec}$ insect will be at point B
(C) Acceleration of insect will be maximum at A
(D) Acceleration of insect will be maximum at O
20. Choose the correct option regarding motion of insect
(A) Maximum velocity of insect during motion is $\pi \mathrm{m} / \mathrm{s}$
(B) Maximum velocity of insect during motion is $\pi^{2} \mathrm{~m} / \mathrm{s}$
(C) Maximum acceleration of insect during motion is $10 \mathrm{~m} / \mathrm{s}^{2}$
(D) Maximum acceleration of insect during motion is $5 \mathrm{~m} / \mathrm{s}^{2}$

PART - II: CHEMISTRY

SECTION-1

Integer Value Type

This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. Examples- If the correct answer to question numbers X, Y and Z (say) are 6,0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

21. White phosphorus, yellow phosphorus or simply tetraphosphorus $\left(\mathrm{P}_{4}\right)$ exists as molecules made up of four atoms in a tetrahedral structure. Calculate the value of expression $\frac{x . y}{z}$ regarding phosphorus molecule. Where
$x=$ Total no. of vertex angles in one P_{4} molecule
$y=$ Total no. of lone pairs in one P_{4} molecule
$z=$ Total no. of $P-P$ bonds in one P_{4} molecule
22. How many of the following Ammonium Salts will evolve Ammonia gas on heating?
$\mathrm{NH}_{4} \mathrm{NO}_{2}, \mathrm{NH}_{4} \mathrm{NO}_{3},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} . \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{NH}_{4} \mathrm{ClO}_{4}, \mathrm{NH} 4 \mathrm{Cl},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S},\left(\mathrm{NH}_{4}\right)_{2} \mathrm{C}_{2} \mathrm{O}_{4}$, $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
23. An ionic crystal (KCl) in which Cl^{-}ions form CCP lattice. The number of K^{+}ions present at a distance of $\frac{\sqrt{5} \mathrm{~A}}{2}$ from Cl^{-}ion at the corner is P . Calculate the value of $\frac{\mathrm{P}}{6}$. [$\mathrm{A}=$ edge length $]$
24. A binary ideal solution formed by two volatile liquids A and B. If total vapour pressure of this solution is represented as:
$\mathrm{Ps}($ in mm of Hg$)=100-50 \mathrm{X}_{B}$ [Ps = Total pressure $] X_{B}=$ Mole fraction of B in liquid state. This solution is passed through different distillation stages and at particular stage it is found that the mole fraction of A in vapour phase is $\frac{4}{7}$. The total vapour pressure of solution at this stage of distillation is $10 x$. What is the value of x ?
25. Consider the following covalent compounds in their solid state and find the value of expression $(x-y+z)$ $\mathrm{N}_{2} \mathrm{O}_{5}, \mathrm{Cl}_{2} \mathrm{O}_{6}, \mathrm{PCl}_{5}, \mathrm{I}_{2} \mathrm{Cl}_{6}, \mathrm{XeF}_{6}, \mathrm{PBr}_{5}$
Where $\mathrm{x}=$ Total no of compounds in which central atom of Cationic or anionic part is $s p^{3}$ hybridised?
$y=$ Total no of compounds having 90° bond angle either in cationic or anionic part
$z=$ Total no. of compounds having $109^{\circ} 28^{\prime}$ bond angle either in cationic or anionic part
26. An electrode is prepared by dipping a silver strip into a solution saturated with silver thiocyanate, AgSCN and containing $0.1 \mathrm{M} \mathrm{SCN}^{-1}$. The cell potential of the Voltaic cell constructed by connecting this electrode as the cathode to the standard Hydrogen Half-cell as the anode is 0.45 V . The $\mathrm{K}_{\mathrm{sp}}(\mathrm{AgSCN})$ calculated is $x \times 10^{-7}$. What is the value of (to the nearest integer) ' x '? (Use $10^{11.86}=7.2 \times 10^{11}$)
27. Vander Waal's gas equation may be expressed as $Z=1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\ldots$. where $V_{m}=$ molar volume of gas. If $B=-0.105 \mathrm{~L} \mathrm{~mol}^{-1}$ and $C=4 \times 10^{-4} \mathrm{~L}^{2} \mathrm{~mol}^{-2}$ at $127^{\circ} \mathrm{C}$, then value of Vander Waal's constant 'a' (in atm $\mathrm{L}^{2} \mathrm{~mol}^{-2}$) is (Given $\mathrm{R}=0.08 \mathrm{~L}-\mathrm{atm} / \mathrm{K} \mathrm{mol}$)
28. Aldol reaction is used in large scale production of the commodity chemical pentaerythritol and the synthesis of heart disease drug Lipitor (atorvastatin). Calculate value of $(x+y)$ from the list of compounds given below, if
$x=$ No. of compounds obtained by Aldol reaction
$y=$ No. of compounds that react with NaHCO_{3}

(A)

(B)

(C)

(D)

(E)

(F)

(G)

SECTION - 2

One or More Options Correct Type

This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which one or more than one is/are correct.
29. Select the correct option(s) for X, Y and Z for the chemical change

(A) X, Y and Z are in same oxidation state
(B) X, Y and Z have equal number of lone pairs at central atom
(C) X, Y and Z all are non-planar
(D) X, Y and Z all have equal number of covalent bonds
30. Potassium permanganate is an inorganic compound with the chemical formula KMnO_{4}. It is Purplishblack crystalline solid that dissolves in water to give intensely pink or purple solution. Pick out the correct statement(s).
(A) MnO_{2} dissolves in conc. HCl but does not form Mn^{+4} ions
(B) Decomposition of acidic KMnO_{4} is not catalysed by sun light
(C) MnO_{4}^{-2} is strongly oxidising and stable only in very strong alkali. In dilute alkali, water or acidic solution it disproportionates.
(D) KMnO_{4} doesnot act as oxidising agent in alkaline medium
31. One mole of $\mathrm{O}_{2}(\mathrm{~g})$ initially at a temperature of 120 K and pressure of 4 atm is expanded adiabatically to 1 atm in such a way that the temperature of the gas falls to 90 K ? C_{P} of O_{2} is $28.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and is constant over the required temperature range. Oxygen gas is supposed to behave as an ideal gas. Choose the correct option(s) [log2 $=0.3, \log 3=0.47]$
(A) $q=0$
(B) $w=+597 \mathrm{~J}$
(C) $\Delta \mathrm{H}=-846 \mathrm{~J}$
(D) $\Delta \mathrm{S}_{\text {sys }}=3.416 \mathrm{~J} \mathrm{~K}^{-1}$
32. Which of the following given reaction among the given reactions is corret?
(A) $2 \mathrm{HNO}_{3} \xrightarrow{\Delta} \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+\frac{1}{2} \mathrm{O}_{2}$
(B) $3 \mathrm{H}_{2} \mathrm{SO}_{3} \longrightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{S} \downarrow+\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{HClO}_{3} \longrightarrow \mathrm{HClO}_{4}+\mathrm{ClO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{CH}_{3} \mathrm{COOK} \xrightarrow{\Delta} \mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{CH}_{3} \mathrm{COOH}$
33. Which of the following statement(s) is/are true?
(A) In the metal carbonyl complexes $\mathrm{C}-\mathrm{O}$ bond length is more than that in a CO molecule
(B) The pair of compounds $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ and $\left[\mathrm{CrCl}_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] .3 \mathrm{H}_{2} \mathrm{O}$ show hydrate isomerism
(C) $\mathrm{d}_{\mathrm{z}^{2}}$ orbital of central metal atom/ions is used in $d s p^{2}$ hybridisation
(D) Facial and meridional isomers associated with $\left[\mathrm{Ma}_{3} \mathrm{~b}_{3}\right]^{ \pm n}$ type complex compound both are optically inactive
34. The following bimolecular elimination reaction $\left(E_{2}\right)$ is carried out with different halogen leaving groups. The percent yield of the two products for each leaving group is listed below?

Which of the following statement(s) is/are TRUE concerning E_{2} reaction
(A) Based on the pKa values of the conjugate acids I^{-}is the best leaving group and F^{-}is the poorest leaving group
(B) When $\mathrm{I}^{-}, \mathrm{Br}^{-}$and Cl^{-}are used as leaving groups Zaitsev's rule is followed
(C) F^{-}is the strongest base and the transition state for reaction with fluoride as the leaving group has the least double bond character
(D) Statements (B) and (C) are incorrect
35. For the reaction $A \underset{K_{2} \operatorname{Sec}^{-1}}{\stackrel{K_{1} \operatorname{Sec}^{-1}}{\rightleftharpoons}} B$, following graph is given
$\mathrm{K}_{1}=4 \times 10^{-2} \sec ^{-1}$. Which is/are correct statement(s) $\left(\ln 2=0.7, \ln \frac{8}{7}=0.14\right)$

(A) Equilibrium constant is 4.0
(B) Time taken for completion of 50% of equilibrium conc. of B is 14 sec
(C) Time taken for completion of 10% of equilibrium conc. of A is 2.8 sec
(D) Rate constant of backward reaction is $10^{-2} \mathrm{sec}^{-1}$
36. A hydrogen like atom (atomic no. Z) is in a higher excited state of quantum number ' n '. This excited atom can make a transition to the first excited state by successively emitting two photons of energies 10.20 eV and 17.00 eV . Alternatively the atom from same excited state can make a transition to the second excited state by successively emitting two photons of energies 4.25 eV and 5.95 . Then select the correct statement(s)
(A) The value of atomic no $(Z)=3$ and excited state $(n)=6$
(B) The value of atomic no $(Z)=2$ and excited state $(n)=5$
(C) The atom during transition from $\mathrm{n}=6$ to $\mathrm{n}=2$ emits radiations in visible region
(D) The atom during transition from $\mathrm{n}=2$ to $\mathrm{n}=1$ emits radiations in infra-red region

SECTION - 3

Paragraph Type

This section contains 2 paragraphs, each describing theory, experiment, data etc. Four questions relate to two paragraphs with two questions on each paragraph. Each question pertaining to a particular passage should has one or more than one correct answers among the four given choices (A), (B), (C) and (D).

Paragraph for Question Nos. 37 and 38

D-Glucopyranose $\xrightarrow[\mathrm{HCl}]{\mathrm{MeOH}}$
(A)
(B) $\xrightarrow[\mathrm{Me}_{2} \mathrm{SO}_{4} / \mathrm{OH}^{-}]{\text {Excess of }}$
$(\mathrm{C}) \xrightarrow{\text { dil. } \mathrm{HCl}}$
37. Identify the correct structure
(A)

(B)

(Compound B)
(C)

(Compound C)
(D)

38. Identify the compound (D) formed in the above reaction
(A)

(B)

(C)

(D)

Paragraph for Question Nos. 39 and 40

In the study of any organic compound it is important to know the element present in it. In addition to carbon \& hydrogen organic compounds contain other elements e.g. nitrogen, Sulphur, halogens etc. The various methods used for qualitative analysis to identify elements and for the measurement of percentage composition of elements. Based on the purification and characterization of organic compounds. Answer the following questions

39. The above L.E. on treatment with Fe^{+2} doesn't give blood red colour due to the
(A) Presence of halogen in the Organic compound
(B) Absence of Sulphur in the Organic Compound
(C) Dissociation of NaSCN into $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN
(D) Formation of Nitroprusside ion $\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]$
40. 0.3 g of an organic compound gave $50 \mathrm{~cm}^{3}$ of nitrogen in Duma's method for estimation of nitrogen collected at 300 K and 700 mm pressure. Calculate percentage of nitrogen in the compound. (Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at $300 \mathrm{~K}=5 \mathrm{~mm}$ of Hg]
(A) 28.01
(B) 24.4
(C) 22.4
(D) 17.46

PART - III: MATHEMATICS

SECTION - 1

Integer Value Type

This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. Examples- If the correct answer to question numbers X, Y and Z (say) are 6,0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

41. If $\sum_{n=1}^{\infty} 3^{n-1} \sin ^{3}\left(\frac{674}{3^{n-1}}\right)=1011 a+b \sin (2022)$, then $\frac{1}{|a|}+\frac{1}{|b|}$ equals
42. If the angle between two faces of a regular tetrahedron is $\cos ^{-1}\left(\frac{4}{9}-\frac{4}{9} a+\frac{4}{9} a^{2} \ldots . \infty\right)(|a|<1)$ then $\cot ^{-1} a+\cot ^{-1}\left(\frac{a}{1-a}\right)+\cot ^{-1} 3 a=n \pi$, then the value of $[n]$ is (where [.] denotes the greatest integer function)
43. If $y\left(x^{2}+(y+1)^{2}\right) d x+x(x+1) d y=(x+1)(y+1)(x d x+y d y+d x+d y)$, represents a curve passing through origin and (a, b) such that $a=b+1$ then $\left[\left|\frac{a}{b}\right|\right]$ is ([.] is the greatest integer function)
44. If $x>0$ and $\int \frac{\left(x^{7}+x^{4}\right) d x}{\left(2 x^{10}+10 x^{8}+25 x^{6}+4 x^{5}+20 x^{3}+4\right)}=\frac{1}{a}\left(\cot ^{-1}\left(\frac{x^{5}}{\rho^{\prime}(x)}\right)\right)+K$, then $\left|\frac{2 \rho^{\prime}(1)}{a}\right|$ equals (where K is constant of integration)
45. If $x \in[0,2 \pi]$ then the number of solution(s) of $2^{[\tan x]}+3^{[\sin x]}+5^{[\cos x]}=1$ is, (where [.] denotes the greatest integer function)
46. If $f(x)=\left|\begin{array}{ccc}x^{2}+x+1 & 3 x & x+2 \\ 3 x & x^{2}+x+1 & x+2 \\ x^{2}+2 x & x^{2}+2 x & 2 x+1\end{array}\right|$. If the area bounded by curve $f(x)$ and the co-ordinate axes is A and $S=1+2 A+3 A^{2}+4 A^{3} \ldots . . \infty$ then $\frac{16}{5} S$, equals
47. If $a_{1}, a_{2}, a_{3} \ldots . . a_{2020}$ and $b_{1}, b_{2}, b_{3} \ldots b_{2020}$ are in A.P with common difference 1 and 2 respectively $\left(a_{i} \neq b_{i}\right)$, then the number of common tangents to the parabolas given by $\mathrm{P}_{\mathrm{i}}: \mathrm{y}^{2}=4 \mathrm{a}_{\mathrm{i}}\left(x-b_{\mathrm{i}}\right)$ is
48. If z_{1}, z_{2}, z_{3} are three complex numbers such that
$\left|z_{1}\right|=2\left|z_{2}\right|=4\left|z_{3}\right|$, then maximum value of $\left|\frac{z_{1}}{z_{2}}+\frac{2 z_{2}}{z_{3}}+\frac{4 z_{3}}{z_{1}}\right|$ is

SECTION - 2

One or More Options Correct Type
This section contains 8 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which one or more than one is/are correct.
49. If $a, b, c \in R$ and $\sin ^{6} a+3 \sin ^{2} a \cos ^{2} b+\cos ^{6} b=1$, then
(A) $a=b$
(B) $a=\pi+b$
(C) $a=\pi-b$
(D) $a=2 \pi-b$
50. The value of $\lim _{x \rightarrow 1^{-}}(1-x) \sum_{k=1}^{\infty} \frac{x^{k}}{1+x^{k}}$ is
(A) $\frac{1}{e}$
(B) $\ln 2$
(C) 1
(D) $\frac{\pi}{2}$
51. PN is the normal to the ellipse $\frac{x^{2}}{9}+y^{2}=1$ at P , meeting major axis at N . If NP is produced outwards away from N such that $Q P=P N$, then
(A) Locus of Q is an ellipse
(B) Eccentricity of Locus at Q is $\frac{4}{5}$
(C) Eccentricity of Locus at $Q=\frac{5}{4}$
(D) Locus of Q in a Hyperbola
52. If $A=\left[\begin{array}{ccc}1 & -2 & -6 \\ -3 & 2 & 9 \\ 2 & 0 & -3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-5 & 9 & -4 \\ -6 & 10 & -4 \\ -6 & 9 & -3\end{array}\right]$, then
(A) $A^{3}=B^{T}$
(B) $A^{2}=B^{\top}$
(C) $A^{n}\left(B^{T}\right)^{n+1} A=A$ if n is even
(D) $A^{n}\left(B^{T}\right)^{n+1} A=A^{3}$ if n odd
53. Let S and S^{\prime} be two circles touching side $B C$ of triangle $A B C$ at B and C respectively. If x and y be the radii of the circles and these circles also passes through the vertex A. If $\sin A=\frac{1}{4}$ and geometric mean of x and y is an integer, then possible length of side $B C$ is
(A) 2
(B) $\frac{4}{3}$
(C) $\frac{5}{2}$
(D) $\frac{2}{3}$
54. If $f(x)=2^{2 x}-2^{x+1} \cos ^{2}(x / 2)+2 \sin ^{2}(x / 2)+\cos ^{2} x$, then
(A) $f(x)$ has minimum value at $x=0$
(B) $f(x)$ has maximum value at $x=0$
(C) $f(x)+|x|=0$ has one solution
(D) $f(x)+|x|=0$ has no solution
55. If $2 a x^{2}+6 x y+2 b y^{2}=1$ represents a curve whose minimum distance from origin is $r(a, b \geq 0)$, then
(A) $r=\frac{1}{3}$ for $\mathrm{a}=0, \mathrm{~b}=4$
(B) $r=\frac{1}{3}$ for $\mathrm{a}=4, \mathrm{~b}=6$
(C) $r=\frac{1}{5}$ for $a=8, b=12$
(D) $r=\frac{1}{5}$ for $\mathrm{a}=12, \mathrm{~b}=8$
56. If $L=\lim _{t \rightarrow 0} \frac{(t+1)^{2}-t \cdot \ln (1+t)^{1+a}+b \sin t+c}{t^{3}}=\frac{5}{6}$, then
(A) $a=0$
(B) $b=2, c=1$
(C) $b=-2, c=-1$
(D) $b=2, c=-1$

SECTION - 3

Paragraph Type

This section contains 2 paragraphs, each describing theory, experiment, data etc. Four questions relate to two paragraphs with two questions on each paragraph. Each question pertaining to a particular passage should has one or more than one correct answers among the four given choices (A), (B), (C) and (D).

Paragraph for Question Nos. 57 and 58

Consider a function $f(x)=2 x^{3}-3 x$. A circle is inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 ;(a>b)$ such that both the curves are concentric, Where $a, b \sqrt{2}$ are integers. Eccentricity of the ellipse is $\frac{1}{\sqrt{2}}$.
57. If $f(a)=-1$ and radius of the circle is a root of the equation $f^{\prime}(x)=0$, then area bounded between the ellipse and the circle is
(A) $\pi\left(\frac{\sqrt{2}-1}{2}\right)$
(B) $\pi\left(\frac{\sqrt{2}+1}{2}\right)$
(C) $\pi \sqrt{2}$
(D) $\frac{\pi}{\sqrt{2}}$
58. With the foci of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ (mentioned in Q. 57) as ends of major axis another ellipse is drawn whose eccentricity is $\frac{1}{\sqrt{2}} \cdot E_{2}: \frac{x^{2}}{a_{1}^{2}}+\frac{y^{2}}{b_{1}^{2}}=1$, then the area bounded between E_{2} and the given circle is
(A) $\frac{(\sqrt{2}+1) \pi}{2 \sqrt{2}} A$
(B) $\frac{(\sqrt{2}-1) \pi}{2 \sqrt{2}}$
(C) $(\sqrt{2}+1) \frac{\pi}{2}$
(D) $(\sqrt{2}-1) \frac{\pi}{2}$

Paragraph for Question Nos. 59 and 60

A curve $y=f(x)$ satisfies the differential equation $x^{3}(d y-d x)+(x d y-2 y d x)=2 x^{2} y d x$, and it is given that $f(1)=\frac{\pi}{4}$
59. The equation of the curve is
(A) $y=\tan ^{-1} x$
(B) $y=x^{2} \tan ^{-1} x$
(C) $y=\frac{\tan ^{-1} x}{x}$
(D) $y=\frac{\tan ^{-1} x}{x^{2}}$
60. If $L=\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{\left(e^{x}-x-1\right)}$, then L is
(A) 2
(B) 4
(C) 6
(D) 8

