Test Date: 05/07/2020

A code

Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005, Ph.011-47623456

Time : 3 hrs

Mock Test_CoE_XII

MM : 264

for JEE (Advanced) - 2020

Test - IA (Paper - I)_Actual Pattern-2015

Topics covered:		
PHYSICS	:	MOCK TEST on Complete Syllabus
CHEMISTRY	:	MOCK TEST on Complete Syllabus
MATHEMATICS	:	MOCK TEST on Complete Syllabus

General Instructions:

Pattern of the questions are as under:

- (i) The question paper consists of 3 parts (Physics, Chemistry and Mathematics). Each part has **3 sections.**
- (ii) Section-1: This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. Each question carries +4 marks for correct answer. There is no negative mark for wrong answer.
- (iii) Section-2: This section contains 10 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which one or more than one is/are correct. Each question carries +4 marks for correct answer, 0 mark if not attempted and -2 marks for wrong answer.
- (iv) Section-3: This section contains 2 questions. Each question contains two Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has five entries (P), (Q), (R), (S) and (T). Match the entries in Column I with the entries in Column II. Each entry in Column I may match with one or more entries in Column II. Each entry in Column I carries +2 marks for correct answer, 0 mark if not attempted and -1 mark for wrong answer.

PART - I: PHYSICS

SECTION - 1

Integer Value Type

This section contains **8** questions. The answer to each of the questions is a **single-digit integer**, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. **Examples-** If the correct answer to question numbers X, Y and Z (say) are 6, 0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

1. Two parallel equilateral plates are placed overlapping each other very close to each other as shown in figure. The plates carry uniformly distributed charge of density σ and $-\sigma$. If electric field at mid-point of

the line joining the centres of two plates is E_0 , then it is at mid-point of AB is $\frac{E_0}{n}$. Find n

2. The moment of inertia of a right circular solid cone of mass 10 kg, radius 1 m and height 3 m about its axis in S.I. unit is _____

3. In the circuit shown, when the switch S is closed, find the amount of heat generated in mJ

4. A uniform sphere has mass *M* and radius *R*. If the pressure at centre due to gravitational compression is $\frac{3GM^2}{k}$, then find *k*.

$$\frac{3600}{k \times \pi R^4}$$
, then find *l*

5. A non-conducting ring of mass *m* radius *R* and uniformly distributed charge Q is placed on rough horizontal surface. A time varying magnetic field $B = 4t^2$ is switched on at t = 0 which is directed normal

to ring. If the ring starts rotating at t = 2s, then coefficient of friction is given by $k \times \frac{QR}{mg}$. Find k.

- 6. A circular wire of mass M, radius R, cross sectional area A and Young's modulus Y is rotated about its axis with constant angular speed ω . If elastic energy stored in wire is given by $U = \frac{M^2 \omega^4 R^3}{\lambda \pi Y A}$, then find λ
- 7. A conducting sphere of radius *R* is placed in uniform electric field. The induced charge density on sphere is $\sigma_0 \cos\theta$, where θ is polar angle. If the electric force on the charges of same sign is $\frac{\pi R^2 \sigma_0^2}{n \epsilon_0}$, then value of *n* is _____

8. One mole of an ideal gas undergoes a processes in which temperature varies with volume as $T = T_0 + 16 V^2$. If the minimum pressure attained is $\lambda R \sqrt{T_0}$, then value of λ is _____

SECTION - 2

One or More Options Correct Type

This section contains **10** multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which **one or more than one is/are correct.**

- 9. A long capillary tube of radius r is dipped vertically in a liquid of density ρ . The angle of contact is zero and surface tension is S. If viscosity of liquid is very low, then maximum rise of liquid in the tube h is related as
 - (A) $h < \frac{2S}{\rho gr}$

(B)
$$h > \frac{23}{\rho gr}$$

- (C) $h < \frac{4S}{\rho gr}$
- (D) $h > \frac{4S}{\rho gr}$
- 10. The potential energy of a particle of mass m which can move along x-axis is given as $U = \alpha |x|$, where α is a positive constant. If the particle is projected from origin with velocity V_0 , then
 - (A) Motion of particle is SHM

- (B) Motion of particle is not SHM
- (C) Time period of motion is $\frac{2mV_0}{\alpha}$ (D) Time period of motion is $\frac{4mV_0}{\alpha}$
- 11. In a displacement method experiment, distance between screen and object is 120 cm. The ratio of sizes of images formed is 1 : 9, then
 - (A) Focal length of lens is 15 cm
 - (B) Focal length of lens is 22.5 cm
 - (C) Distance between two positions of lens is 60 cm
 - (D) The smaller image is more brighter than larger image

Test-1A_Paper-1_(Code-A

Mock test for JEE Main & Advanced 2020

12. An elastic conducting cord of length I_0 and force constant k is fastened to the nails N_1 and N_2 as shown. Uniform magnetic field B is present as shown. If constant current I is passed through cord, then in steady state

- (A) Shape of cord would be circular arc(C) Shape of cord would be elliptical arc
- (B) Shape of cord would be parabolic arc(D) Magnetic force of cord is *I I*₀ *B*
- 13. A non-conducting long hollow cylinder of radius *R* having uniform surface charge density σ is rotated with varying angular speed given as $\omega = kt$, where *k* is small positive constant, then
 - (A) Magnetic field inside cylinder is uniform (in space)
 - (B) Electric field inside cylinder is uniform (in space)
 - (C) Magnetic field strength is constant
 - (D) Electric field strength is constant
- 14. One mole of an ideal monoatomic gas is taken through a cyclic process as shown in figure. If $T_0 = 27^{\circ}$ C, then

- (A) Temperature at C is 327°C
- (B) Heat supplied to gas in process A \rightarrow B is 750 R
- (C) Total work done by gas in cyclic process is 300R
- (D) Total heat absorbed by the gas is 450 R
- 15. A white light beam is incident normally on a glass plate of thickness 5×10^{-7} m. The refractive index of glass is 1.50. The wavelength of light which is/are strongly reflected by plate is/are (approximately)
 - (A) 460 nm (B) 430 nm
 - (C) 530 nm (D) 600 nm
- 16. In a series LCR circuit with an AC source as shown in figure

(A) rms current in circuit is 0.2 A

(B) Circuit is in resonance

(D) Power factor of circuit is 0.6

- (C) rms voltage across capacitor is 50 V
- 17. A beam of photons of energy $\frac{144 E_0}{225}$ is incident on identically excited hydrogen like ions, where E_0 is
 - ionization energy of hydrogen atom in ground state. Ten distinct lines are observed in emission spectrum. Then
 - (A) Initially ions were in second excited state
- (B) Ions get excited to fourth excited state
- (C) Ions are of lithium
- (D) Ions are of helium

Aakash Educational Services Limited – Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 [Page 4]

18. The space between two concentric spherical shells of radii 30 cm and 90 cm is filled with a material of conductivity k. If inner cell is maintained at 100°C and the outer shell is **maintained** at 0°C, then

- (A) Temperature at 60 cm from centre is 40°C
- (B) Temperature at 60 cm from centre is 25°C
- (C) Temperature of 50°C is at distance 50 cm from centre
- (D) Temperature of 50° C is at distance 45 cm from centre

SECTION - 3

Matching Column Type

This section contains two questions. Each question contains two Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has five entries (P), (Q), (R), (S) and (T). Match the entries in Column I with the entries in Column II. Each entry in Column I may match with one or more entries in Column II. The OMR contains a 4×5 matrix whose layout will be similar to the one shown below : For each entry in Column I, darken the bubbles of all the matching entries. For example, if entry (A) in Column I matches with entries (Q), (R) and (T), then darken these three bubbles in the OMR. Similarly, for entries (B), (C) and (D)

(A)	(P) (Q) (R) (S) (T)
(B)	(P) (Q) (R) (S) (T)
(C)	(P) (Q) (R) (S) (T)
(D)	(P) (Q) (R) (S) (T)

19. Column-I contains four object rolling without slipping on an inclined plane as shown. Column-II contains related quantities for rolling objects in Column I. Match the entries of two columns

(S) Acceleration of centre is $\frac{8}{13}g\sin\theta$

(T) Frictional force is $\frac{31}{101}mg\sin\theta$

20. Column-I contains cases of modified YDSE where D = 1.5 m, d = 1 mm and λ (in air) = 500 nm. Maximum intensity on screen is I₀. O and P are points on screen. Match the entries of two columns.

PART – II: CHEMISTRY

SECTION - 1

Integer Value Type

This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. Examples- If the correct answer to question numbers X, Y and Z (say) are 6, 0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

- 21. Consider the given aldohexose
 - CHO
 - ĊH,
 - СНОН
 - І СНОН
 - Ĭ
 - СНОН
 - I CH₂OH

The given aldohexose exists in it D-form and is allowed to undergo cyclisation to give its form pyranose form. How many stereoisomers are formed?

22. A radioactive compound undergoes first order decomposition. The time taken for its activity to become 1/8 and 1/10 of its initial concentration are t_1 and t_2 respectively. The ratio $\frac{t_2}{t_1}$ can be expressed as $\frac{10}{x}$.

What is the value of x?

23. Consider the given reaction sequence

$$\underbrace{\mathsf{O}}_{(2) \text{ KBrO}_3, \text{ HBr}}^{(1) (CH_3CO)_2O, \text{ Pyridine}}_{(2) \text{ KBrO}_3, \text{ HBr}} (P) \\ \xrightarrow{(3) \text{ H}^*, \text{ H}_2O, \Delta}_{(4) \text{ NaNO}_2, \text{ HCI}} (p) \\ \xrightarrow{(3) \text{ Cl}}_{(5) \text{ CuBr}, \text{ HBr}} (P)$$

The number of bromine atoms present in 1 molecule of compounds (P) is

24. How many geometrical isomers are possible for the hexa-coordinated complex[CoCl₂(gly)₂]⁻?

 $gly \equiv H_2N - CH_2 - C - O^-$

- 25. Conductance of 0.2 M solution of an electrolyte was found to be 0.02 S. The specific conductance of the solution was found to be 1.4 Sm⁻¹. If the resistance of the 0.5 M solution of same electrolyte is 280 Ω , then the molar conductivity of the 0.5 M solution of the electrolyte is (x × 10^{-y}) S m²mol⁻¹ when expressed in specific notation. Report the value of (x + y)
- 26. The maximum number of electrons which have principal quantum number n = 4 and the sum of magnetic quantum number (m) and azimuthal quantum number (l) equal to zero *i.e.* l + m = 0 is
- 27. How many of the given compounds are amphoteric?

Cr₂O₃, BeO, SnO, SnO₂, ZnO, Al₂O₃, PbO, PbO₂, B₂O₃

28. 0.1 molal solution of a complex represented as $CoCl_3.xNH_3$ shows a depression in freezing point equal to 0.558 K. If the complex is hexa-coordinated and there is no NH_3 outside the coordination sphere, then find the value of x. (K_f of $H_2O = 1.86$ K molal⁻¹)

SECTION - 2

One or More Options Correct Type

This section contains **10** multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which **one or more than one is/are correct.**

29. Upon heating $KCIO_3$ in presence of catalytic amount of MnO_2 , a gas W is formed. Excess of W reacts with white phosphorus to give X. Reaction of conc. HNO_3 with X produce Y and Z

OH

OH

(B) X is P₄O₁₀

(D) Z is N_2O_5

$$\mathsf{KCIO}_3 \xrightarrow{\Delta} \mathsf{W}_{(Gas)} \xrightarrow{P_4} \mathsf{X} \xrightarrow{\mathsf{HNO}_3} \mathsf{Y} \overset{\mathsf{P}_4}{\xrightarrow{(\mathsf{N containing})}} \mathsf{X}$$

Select the correct option(s).

- (A) W is ozone
- (C) Y is H_3PO_3
- 30. Which of the following is correct about the diffusion coefficient of an ideal gas?
 - (A) It is proportional to mean free path of the gas
 - (B) It is inversely proportional to mean free path
 - (C) It is proportional to mean speed of the gas
 - (D) It is inversely proportional to mean speed of the gas
- 31. The major product of the given reaction is

- 32. Select the correct statement(s) about the preparation of amines through Ammonolysis of alkyl halides.
 - (A) Ammonolysis can produce primary, secondary and tertiary amines
 - (B) The order of reactivity of halide follows the order R I > R Br > R CI in Ammonolysis
 - (C) If Ammonia is taken in excess then major product is primary amine
 - (D) If alkyl halide is taken in excess, then major product is quaternary ammonium salt
- 33. Consider the given species:

 N_2 , O_2^- , C_2 and Be_2^+

Select the correct statement(s).

- (A) Ionisation increases bond order in two of these species
- (B) Ionisation decreases bond order in two of these species
- (C) Two of these species have antibonding molecular orbital as LUMO
- (D) Three of these species have antibonding molecular orbital as LUMO
- 34. Cr²⁺ and Mn³⁺ both exhibit d⁴ configuration. Which of the following is correct about their oxidising or reducing nature?
 - (A) Cr²⁺ acts as reducing agent

(B) Cr²⁺ acts as oxidising agent
(D) Mn³⁺ acts as oxidising agent

- (C) Mn³⁺ acts as reducing agent
- 35. Select the correct statement(s) from the following
 - (A) Frenkel defect is non-stoichiometric defect
 - (B) Schottky defect increases the conductivity
 - (C) Impurity defect always increases the density in ionic solids
 - (D) Metal excess defect is a non-stoichiometric defect

- 36. Which of the given statement(s) is/are correct?
 - (A) Benzaldehyde gives positive Fehling's test
 - (C) Benzoin gives positive Tollen's test
- (B) Benzaldehyde gives positive Tollen's test
- (D) Acrylaldehyde gives positive Tollen's test
- 37. A mixture of two Pinnacols (P) and (Q) are subjected to reaction with conc. H₂SO₄

$$\begin{array}{ccc} Ph & Me & Ph & Et \\ Ph - C - C - Me & Ph - C - C - Et \\ OH & OH & OH \\ \end{array}$$

The products obtained are

38. Consider the reaction sequence given below

Which of the given compounds are formed during the course of the reaction?

SECTION - 3

Matching Column Type

This section contains two questions. Each question contains two Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has five entries (P), (Q), (R), (S) and (T). Match the entries in Column-I with the entries in Column-II. Each entry in Column-I may match with one or more entries in Column II. The OMR contains a 4×5 matrix whose layout will be similar to the one shown below : For each entry in Column-I, darken the bubbles of all the matching entries. For example, if entry (A) in Column I matches with entries (Q), (R) and (T), then darken these three bubbles in the OMR. Similarly, for entries (B), (C) and (D)

Column-I

(A) Siderite

(C) Cryolite

(B) Chromite

(D) Argentite

(A)	(P)	(Q)	(R)	(S)	(T)
(B)	(P)	(Q)	(R)	(S)	(T)
(C)	(P)	(Q)	(R)	(S)	(T)
(D)	(P)	(Q)	(R)	(S)	(T)

39. Match the ores or mineral given in Column-I to the properties on operations given in Column-II

Column-II

- (P) Carbonate ore
- (Q) Sulphide ore
- (R) Oxide ore
- (S) Contains more than one type of metal ion
- (T) Froth floatation must be done during extraction
- 40. Column-I contains certain cells while Column-II contains the properties associated with these cells. Match appropriately

Column-I	Column-II
(A) $Zn Zn^{2+} Mg^{2+} Mg_{(0.1 M)}^{(0.1 M)}$	(P) $\vec{E_{cell}} > 0$
(B) $Ag Ag^{+} CI^{-} AgCI Ag$ 1M 1 M	(Q) $E_{cell}^{\circ} = 0$
(C) $Pt \begin{vmatrix} H_2 \\ 1 \text{ atm} \end{vmatrix} = H^+ \begin{vmatrix} H_1 \\ H_2 \end{vmatrix} = H^+ = 1 \begin{vmatrix} H_2 \\ 1 \text{ atm} \end{vmatrix} Pt$	(R) E _{cell} > 0
(D) $Pt \begin{vmatrix} CI_2 \\ 1 \text{ atm} \end{vmatrix} \begin{vmatrix} CI^- \\ (1 \text{ M}) \end{vmatrix} \begin{vmatrix} CI^- \\ (1 \text{ M}) \end{vmatrix} \begin{vmatrix} CI_2 \\ 0.5 \text{ atm} \end{vmatrix} Pt$	(S) E _{cell} < 0
	(T) $E_{cell}^{\circ} < 0$

PART – III: MATHEMATICS

SECTION - 1

Integer Value Type

This section contains 8 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The answer will have to be appropriately bubbled in the OMR as per the instructions as follows. Examples- If the correct answer to question numbers X, Y and Z (say) are 6, 0 and 9 respectively, then mark 6, 0 and 9 in OMR respectively

- 41. Eccentricity of an ellipse of minimum area circumscribing two circle of equal radius r touching externally is e, then 9e² is equal to
- 42. Let \vec{r} and \vec{s} be unit vectors. If \vec{t} is a vector such that $\vec{t} + (\vec{t} \times \vec{r}) = \vec{s}$, the maximum value of the volume

of parallelepiped formed by \vec{r}, \vec{s} and \vec{t} is $\frac{3}{2k}$, then k is equal to

43. With usual notation in $\triangle ABC$, the numerical value of $\left(\frac{a+b+c}{r_1+r_2+r_3}\right)\left(\frac{a}{r_1}+\frac{b}{r_2}+\frac{c}{r_3}\right)$ is

44. Let $f:(0,\infty) \to (0,\infty)$ be a function differentiable at x = 3 and satisfying f(3) = 3f'(3) if the value of

$$\lim_{x \to \infty} \left(\frac{f\left(3 + \frac{3}{x}\right)}{f(3)} \right)^x$$
 is L then [L] is equal to (where [k] represents greatest integer function)

- 45. If the area bounded by the curve $y=x^2-x$ and the lines y=mx and y=nx is $\frac{37}{6}(m > n, m, n \in N)$ then the value of (m + n) is
- 46. The chord of circle $x^2 + y^2 6x 8y = 0$ passing through (0,0) and having positive slope, subtends an angle $\tan^{-1}\left(\frac{5}{4}\right)$ at the point where the circle meets the positive y-axis has the equation ax+by=0 then |3a + b| is equal to (where a, b are coprimes)
- 47. Common tangents are drawn to parabola $y^2=4x$ and the ellipse $3x^2+8y^2=48$ touching the parabola at A and B and ellipse at C and D. Let S₁ and S₂ represents area of circles with AB and CD as diameters

respectively then $\frac{9}{16} \left(\frac{S_1}{S_2} \right)$ is equal to

48. If a chord PQ of hyperbola xy=4 is normal at the point P, subtending an angle α at origin O, then the

value of
$$\left| \frac{\sin(\alpha - \beta)}{\sin(\alpha + \beta)} \right|$$
 (Where $\angle OPQ = \beta$) is equal to

SECTION - 2

One or More Options Correct Type

This section contains **10** multiple choice questions. Each question has 4 choices (A), (B), (C) and (D), for its answer, out of which **one or more than one is/are correct.**

- 49. In a game a person P at (x, y) can Jump to any one of the following points relatively (x+2,y), (x+4, y), (x,y+2), (x, y+4). If P is at (1,1) then the number of ways to reach the point
 - (A) (5,5) is 14
 - (B) (5,5) is 24
 - (C) (7,8) is 0
 - (D) (9,9) through (5,5) is 196

50. Let $A=[a_{ij}]_{3\times 3}$ be a matrix with the elements either 0 (or) 1 and $S_i = \sum_{k=1}^{3} a_{ik}$ and $t_i = \sum_{k=1}^{3} a_{ki}$ If the

probability of that the product $S_1S_2S_3t_1t_2t_3$ is an odd number, is $\frac{m}{n}$ then (m, n are coprimes)

- (A) m + n = 33
- (B) m + n=32
- (C) number of divisors of mn= 6
- (D) number of divisors of mn=12

51. If $I_m = \int_0^{m\pi} |\sin x| e^{\cos 4x} dx$

and $S_n = \int_0^{n\pi} x |\cos x| e^{\cos 4x} dx$ where $m, n \in N$ ([k] represents greatest integer function) then

(A)
$$\frac{S_{10}}{l_{10}} = \frac{S_{100}}{l_{1000}}$$

(B) $\frac{S_{10}}{l_{10}} \neq \frac{S_{100}}{l_{1000}}$
(C) $\sin\left(\frac{S_{12}}{l_8}\right) = 0$
(D) $\sin\left(\frac{l_{12}}{l_8}\right) = \frac{1}{2}$

52. If the equation

 $(2 + \sin^2 x)^2 - (a - 3) (2 + \sin^2 x) (1 + \sin^2 x) + (a - 4) (1 + \sin^2 x)^2 = 0$ has at least one real root then the complete set of values of a is $[\alpha, \beta]$ then

(A) $\alpha + \beta = 11$ (B) $\beta - \alpha = \frac{1}{2}$

(C)
$$\alpha + \beta = \frac{23}{2}$$
 (D) $\beta - \alpha = 1$

53. If f(x) and g(x) are functions such that f(x+y) = f(x)g(y)+g(x)f(y) then $\begin{cases} f(\alpha) & g(\alpha) & f(\alpha+\theta) \\ f(\beta) & g(\beta) & f(\beta+\theta) \\ f(\gamma) & g(\gamma) & f(\gamma+\theta) \end{cases}$ is

independent of (where $f(\theta)$. $g(\theta) \neq 0$)

(A) α (B) β (C) γ (D) θ 54. Let $f: R \to R$ be a function defined by $f(x) = \begin{cases} \left[\left(x^2 + \sqrt{x^2 + x + 1} \cdot \operatorname{sgn}(x) \right)^{1/3} \right] & \text{if } [x] \le 1 \\ 0 & \text{if } [x] \ge 2 \end{cases}$ where [k]

represents greatest integer function and sgn(x) represents signum function. If $\int_{-1}^{2} \frac{f(x^2) \sin x}{2 + f(x+3)} dx = k \sin \alpha \sin \beta$, such that $\alpha > \beta$ then

0

(A) $f(k)f(\alpha) = 1$ (B) $4\alpha\beta = 1$

(C)
$$\alpha\beta = 4$$
 (D) $\beta(f(2\alpha)) =$

55. Let $f(x) = \sin x + ax + b$. Then f(x) = 0 has

(A) Only one real root which is positive if a > 1, b < 0

- (B) Only one real root which is negative if a > 1, b > 0
- (C) Only one real root which is negative if a < -1, b < 0
- (D) Only one real root which is negative if a > 1, b < 0

56. Let
$$S = \sum_{k=1001}^{3001} \left(\frac{1}{k}\right)$$
, then
(A) $S > 1$
(B) $S < 1$
(C) $S > \frac{4}{3}$
(D) $S < \frac{4}{3}$

Aakash Educational Services Limited - Regd. Office: Aakash Tower, 8, Pusa Road, New Delhi-110005[Page 12]

- 7. Let $N = 2 \times 5 \times 7$, then
 - (A) Number of factors of N^2 which are less than N and are not the factors of N is 98
 - (B) Number of factors of N Which are of the form 4K + 1, $K \in N$ is 9
 - (C) Number of factors of N which are multiples of 54 is 10
 - (D) Numbers of factors of N which are of the form $4K + 1, K \in N$ is 8

58. If the normal at any given point P (θ) on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets its auxiliary circle at Q and R such

that $\angle QOR = 90^{\circ}$. O is centre of ellipse, then

- (A) $2(a^2 b^2)^2 = a^4 \sec^2 \theta + a^2 b^2 \csc^2 \theta$
- (B) $a^4 + 5a^2b^2 + 2b^4 = a^4\tan^2\theta + a^2b^2\cot^2\theta$
- (C) $a^4 + 5a^2b^2 + 2b^4 > 2a^3b$
- (D) $a^4 + 2b^4 \ge 5a^2b^2 + 2a^3b$

SECTION - 3

Matching Column Type

This section contains two questions. Each question contains two Columns (Column I and Column II). Column I has four entries (A), (B), (C) and (D), Column II has five entries (P), (Q), (R), (S) and (T). Match the entries in Column I with the entries in Column II. Each entry in Column I may match with one or more entries in Column II. The OMR contains a 4×5 matrix whose layout will be similar to the one shown below : For each entry in Column I, darken the bubbles of all the matching entries. For example, if entry (A) in Column I matches with entries (Q), (R) and (T), then darken these three bubbles in the OMR. Similarly, for entries (B), (C) and (D)

(A)	(P) (Q) (R) (S) (T)
(B)	(P) (Q) (R) (S) (T)
(C)	(P) (Q) (R) (S) (T)
(D)	$\begin{array}{c} (P) \end{array} (Q) \end{array} (R) \end{array} (S) \end{array} (T)$

59. Match the following

	Column-I	Colum	n-II
(A)	Let $\vec{a} = i + j + k$, $\vec{b} = x\hat{i} + y\hat{j} + z\hat{k}$, where x,y,z \in {-3,-2,-1,0,1,2}	(P)	9 16
	Then the number of possible vectors \vec{b} such that $\vec{a}\vec{b} = 0$ is		
(B)	Let A and B are the interior points on the sides QR and	(Q)	15
	RS of parallelogram PQRS and $\overline{QA} = 4\overline{AR}$ and $\overline{RB} = 4\overline{BS}$		
	If the line joining A and B intersects the diagonal PR at G		
	such that $25\overline{PG} = \lambda \overline{PR}$, then λ equal to		
(C)	If $\left \overline{AB} \times \overline{CD} + \overline{BC} \times \overline{AD} + \overline{CA} \times \overline{BD}\right = K.\Delta$ where A, B, C, D be any	(R)	25
	Four points and Δ being the area of ΔABC then K^2 equal to		
(D)	If $\overline{r} = xi + yj + zk$; $x, y, z > 0$ such that $\overline{r} \cdot (i + j + k) = 3$, then the	(S)	21
	Least value of $\frac{10x}{3-x} + \frac{10y}{3-y} + \frac{10z}{3-z}$ is		
		(T)	16

Mock test for JEE Main & Advanced 2020

1030		Mote test for see main & Advanced 2020				
60.	Suppose f is a differential function satisfying the conditions $f(x + y) = f(x) + f(y) - xy$ and $f'(0) = 1$ and					
	y=g(x) be the solution of the differential eq	vation $x^2 y \frac{d^2 y}{dx^2} + \left(x \frac{dy}{dx} - y\right)^2 = 0$, such that				
	$g(x) \ge 0 \forall x \in (-\infty, 0] \cup [1, \infty)$ and passing through (1, 0) a	nd (2,1). then				
	Column-I	Column-II				
	(A) the number of points of nondifferentiability of	(P) $\frac{2}{3}$				
	y= f(x) is equal to					
	(B) the value of g(0) is	(Q) 3				
	(C) the number of solutions of $\sqrt{f(x)} = g(x)$ is equal to	(R) 2				
	(D) the area bounded by $y = f(x)$ and $x - axis$ is	(S) 1				
		(T) O				